4.6 Article

Nanocrystallization of Anthocyanin Extract from Red-Fleshed Apple ′QN-5′ Improved Its Antioxidant Effect through Enhanced Stability and Activity under Stressful Conditions

Journal

MOLECULES
Volume 24, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/molecules24071421

Keywords

oxidative stress; red-fleshed apple; anthocyanin; antioxidant; nanocrystallization

Funding

  1. China Agriculture Research System Foundation [CARS-27]
  2. Shandong Provincial Taishan Scholar Constructive Foundation
  3. Qingdao Scientific Research Foundation, Graduate Student Innovation Projects of QAU [QYC201822]

Ask authors/readers for more resources

Red-flesh apples are known as functional fruits because of their rich anthocyanin. The anthocyanin content of the red flesh apple cultivar ' QN-5 ' we bred can reach 361 mg center dot kg(-1) (FW), and showed higher scavenging capacity to DPPH radicals, hydroxyl radicals, and superoxide anion radicals, with scavenging rates of 80.0%, 54.0%, and 43.3%, respectively. We used this particular anthocyanin-rich ' QN-5 ' apple as material to examine how nanocrystallization affects the antixodiant effect of anthocyanin. The anthocyanin extract was encapsulated with biocompatible zein to form zein-anthocyanin nanoparticles (ZANPs). Transmission electron microscopy (TEM) scanning showed that ZANPs had a regular spherical shape with an average diameter size of 50-60nm. When the ratio of the zein and the anthocyanin was 1:0.5, the results suggested that the encapsulation efficiency (EE) of the ZANPs could reach as high as 92.8%, and that scavenging rate for DPPH radicals was increased from 87.1% to 97.2% compared to the non-nanocrystallized anthocyanin extract. Interestingly, treatment under alkaline conditions (pH 9.0), high temperature (90 degrees C), and a storage time of 7 days could decrease the scavenging capacity of the ZANPs for DPPH radicals, but this scavenging capacity loss for ZANPs was significantly lower than that observed in the non-nanocrystallized anthocyanin, suggesting the higher stability of ZANPs is caused by encapsulation. These results would provide a theoretical basis for the application of the anthocyanin in scavenging free radicals under stress conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available