4.7 Article

Sonic Hedgehog Effectively Improves Oct4-Mediated Reprogramming of Astrocytes into Neural Stem Cells

Journal

MOLECULAR THERAPY
Volume 27, Issue 8, Pages 1467-1482

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2019.05.006

Keywords

-

Funding

  1. Natural Science Foundation of China [81571208, 81772357, 81472098]
  2. National Nature Science Foundation of China [81830077]
  3. Natural Science Foundation of Shaanxi province [2017JM8012]
  4. key fund of Honghui Hospital [YJ2017001]

Ask authors/readers for more resources

Irreversible neuron loss following spinal cord injury (SCI) usually results in persistent neurological dysfunction. The generation of autologous neural stem cells (NSCs) holds great potential for neural replenishment therapies and drug screening in SCI. Our recent studies demonstrated that mature astrocytes from the spinal cord can directly revert back to a pluripotent state under appropriate signals. However, in previous attempts, the reprogramming of astrocytes into induced NSCs (iNSCs) was unstable, inefficient, and frequently accompanied by generation of intermediate precursors. It remained unknown how to further increase the efficiency of astrocyte reprogramming into iNSCs. Here, we show that mature astrocytes could be directly converted into iNSCs by a single transcription factor, Oct4, and that the iNSCs displayed typical neurosphere morphology, authentic NSC gene expression, self-renewal capacity, and multipotency. Strikingly, Oct4-driven reprogramming of astrocytes into iNSCs was potentiated with continuous sonic hedgehog (Shh) stimulation, as demonstrated by a sped-up reprogramming and increased conversion efficiency. Moreover, the iNSC-derived neurons possessed functionality as neurons. Importantly, crosstalk between Sox2/Shh-targeted downstream signals and phosphatidylinositol 3-kinase/cyclin-dependent kinase 2/Smad ubiquitin regulatory factor 2 (PI3K/Cdk2/Smurf2) signaling is likely involved in the mechanisms underlying this cellular event. The highly efficient reprogramming of astrocytes to generate iNSCs will provide an alternative therapeutic approach for SCI using autologous cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available