4.5 Article Proceedings Paper

Recalescence and Segregation Phenomena During Equiaxed Dendritic Solidification of Fe-C Alloy

Publisher

SPRINGER
DOI: 10.1007/s11663-019-01582-4

Keywords

-

Funding

  1. National Natural Science Foundation of China [51804067, U1560208, 51674072]
  2. China Postdoctoral Science Foundation [2018M631805]
  3. Fundamental Research Funds for the Central Universities [N172503013]
  4. Postdoctoral Foundation of Northeastern University [20180201]

Ask authors/readers for more resources

Recalescence and segregation are two characteristic phenomena for the equiaxed dendritic solidification of alloys. The present work developed a two-dimensional dendritic model with cellular automaton (CA) method to investigate influence mechanisms of thermal conditions on recalescence and segregation behaviors of Fe-0.82wt pct C alloy. The released latent heat reduces the undercooling around the equiaxed dendrite, and thus eases its growth velocity. The predicted steady growth velocity agrees well with the analytical results as the melt undercooling is 9 K. Additionally, the present CA model can ensure the growth consistence of equiaxed dendrites in the undercooled melt. With improving the convective heat transfer coefficients applied around the domain boundaries, the temperature recalescence in the domain center becomes more significant, and the corresponding solid fractions enhance. It is because that the stronger cooling promotes the solidification, resulting in more latent heat released. Accordingly, the heat dissipation can be neutralized. Moreover, a deeper undercooling for the temperature recalescence is needed under a stronger cooling condition. With the increase of both the cooling rate and the convection coefficient, secondary arms of the equiaxed dendrite become more developed. At the lower cooling rate range, the segregation ratio in the domain enlarges with the improvement of the cooling rate. However, it gets weaker under the condition with super cooling intensity due to the expansion of the low concentration region. As the convection coefficient is enhanced, the solute segregation in the domain gets less pronounced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available