4.3 Article

Surface biofunctionalization of the decellularized porcine aortic valve with VEGF-loaded nanoparticles for accelerating endothelialization

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2018.12.079

Keywords

Tissue-engineered heart valve; Hybrid valve; Polycaprolactone nanoparticles; Drug delivery system; Vascular endothelial growth factor; Endothelialization

Funding

  1. National High-tech Research and Development Program (863 Program) of China [2014AA020539]
  2. National Natural Science Foundation of China [81770388, 81660070, 31330029]
  3. Outstanding Young Talent Program of Jiangxi Province [20162BCB23059]
  4. Natural Science Foundation of Jiangxi Province [20151BAB205007, 20161BBI90015, 20171ACB21061]
  5. Research Project of Jiangxi Provincial Department of Education [150274]

Ask authors/readers for more resources

The original intention for building a tissue-engineered heart valve (TEHV) was to simulate a normal heart valve and overcome the insufficiency of the commonly used heart valve replacement in the clinic. The endothelialization of the TEHV is very important as the endothelialized TEHV can decrease platelet adhesion and delay the valvular calcification decline process. In this work, we encapsulated vascular endothelial growth factor (VEGF) into polycaprolactone (PCL) nanoparticles. Then, through the Michael addition reaction, PCL nano particles were introduced onto the decellularized aortic valve to prepare a hybrid valve. The encapsulation efficiency of the PCL nanoparticles for VEGF was up to 82%, and the in vitro accumulated release rate was slow without an evident initial burst release. In addition, the hybrid valve had a decreased hemolysis ratio and possessed antiplatelet adhesion capacity, and it was able to promote the adhesion and proliferation of endothelial cells, covering the surface with a dense cell layer to accelerate endothelialization. An experiment involving the subcutaneous implant in SD rats showed that at week 8, lots of blood capillaries were formed in the hybrid valve. Mechanics performance testing indicated that the mechanical property of the hybrid valve was partly improved. Taken together, we applied a nano-drug controlled release system to fabricate TEHV, and provide an approach for the biofunctionalization of the TEHV scaffold for accelerating endothelialization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Materials Science, Biomaterials

MMP inhibition as a novel strategy for extracellular matrix preservation during whole liver decellularization

Mohammadreza Kasravi, Alireza Yaghoobi, Tahereh Tayebi, Mahsa Hojabri, Abdolkarim Talebi Taheri, Fatemeh Shirzad, Bahram Jambar Nooshin, Radman Mazloomnejad, Armin Ahmadi, Fatemeh A. Tehrani, Ghasem Yazdanpanah, Mohammad Hadi Farjoo, Hassan Niknejad

Summary: As a promising approach in translational medicine, the decellularization of discarded livers to produce bioscaffolds that support recellularization has potential in overcoming the limitations of conventional liver transplantation. In this study, the researchers investigated the use of matrix metalloproteinase (MMP) inhibition to preserve the extracellular matrix (ECM) during liver decellularization. The results demonstrated that the application of an MMP inhibitor significantly improved the preservation of ECM components and mechanical properties of the bioscaffolds, which supported cell viability and function in vitro. The study also confirmed that the MMP inhibition led to the inhibition of MMP2 and MMP9, providing a novel method to enhance ECM preservation during liver decellularization.

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation

Mohammadsadegh Nadimifar, Weiguang Jin, Clara Coll-Satue, Gizem Bor, Paul Joseph Kempen, Ali Akbar Moosavi-Movahedi, Leticia Hosta-Rigau

Summary: This study presents a metal-phenolic self-assembly approach that can prepare nanoparticles fully made of hemoglobin. The nanoparticles exhibit good oxygen binding and releasing capabilities.

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Antifibrotic properties of hyaluronic acid crosslinked polyisocyanide hydrogels

Jyoti Kumari, Roel Hammink, Jochem Baaij, Frank A. D. T. G. Wagener, Paul H. J. Kouwer

Summary: Fibrosis is the formation of fibrous connective tissue in response to injury, leading to organ dysfunction. A novel hybrid hydrogel combining synthetic polyisocyanide with hyaluronic acid has been developed, showing strong antifibrotic properties.

BIOMATERIALS ADVANCES (2024)

Letter Materials Science, Biomaterials

Reply to concerns on Rodrigues et al., Investigation of plasma treatment on UHMWPE surfaces: Impact on physicochemical properties, sterilization and fibroblastic adhesion

Melissa Machado Rodrigues, Cristian Padilha Fontoura, Charlene Silvestrin Celi Garcia, Sandro Tomaz Martins, Joao Antonio Pegas Henriques, Carlos Alejandro Figueroa, Mariana Roesch Ely, Cesar Aguzzoli

BIOMATERIALS ADVANCES (2024)

Article Materials Science, Biomaterials

Radial matrix constraint influences tissue contraction and promotes maturation of bi-layered skin equivalents

Jessica Polak, David Sachs, Nino Scherrer, Adrian Suess, Huan Liu, Mitchell Levesque, Sabine Werner, Edoardo Mazza, Gaetana Restivo, Mirko Meboldt, Costanza Giampietro

Summary: Human skin equivalents (HSEs) play a crucial role in tissue engineering. This study introduces a 3D-printed culture insert to apply a static radial constraint on HSEs and examines its effects on tissue characteristics. The results show that the diameter of the culture insert significantly influences tissue contraction, fibroblast and matrix organization, keratinocyte differentiation, epidermal stratification, and basement membrane formation. This study provides important insights for the design of skin tissue engineering.

BIOMATERIALS ADVANCES (2024)

Review Materials Science, Biomaterials

Methods for improving the properties of zinc for the application of biodegradable vascular stents

Shiliang Chen, Tianming Du, Hanbing Zhang, Jing Qi, Yanping Zhang, Yongliang Mu, Aike Qiao

Summary: This paper reviewed the primary methods for improving the overall properties of biodegradable zinc stents. It discussed the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies. Alloying was found to be the most common, simple, and effective method for improving mechanical properties. Deformation processing and surface modification further improved the mechanical properties and biological activity of zinc alloys. Meanwhile, structural design could endow stents with special properties. Manufacturing zinc alloys with excellent properties and exploring their interaction mechanism with the human body are areas for future research.

BIOMATERIALS ADVANCES (2024)