4.6 Article

Increasing spontaneous wet adhesion of DOPA with gelation characterized by EPR spectroscopy

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 228, Issue -, Pages 124-130

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2019.02.054

Keywords

Wet adhesion; DOPA hydrogel; Surface coverage; EPR spectroscopy

Funding

  1. Turkish Scientific and Technological Research Council (Tubitak) via 3501 Program [114Z318]

Ask authors/readers for more resources

The presence of water molecules around both adhesive materials and surface results in the hydration barriers that weaken adhesion. In nature, mussels attach to various types of surfaces by using 3,4-dihydroxyphenylalanine (DOPA) containing mussel foot proteins. DOPA shows wet adhesive properties before and after contribution in the hydrogel formation. Here, the wet adhesive properties of DOPA modified four armed poly (ethylene glycol) polymer (PEG-(DOPA)(4)) and its hydrogels induced by (IO4)(-) or (Cr2O7)(2-) ions are compared by using electron paramagnetic resonance (EPR) spectroscopy in terms of their surface coverages. In water, spin labeled hydrophobic polystyrene (SL-PS) and hydrophilic silica (SL-SiO2) nanoparticles are prepared, and the percentages of their covered surface values are obtained. Without applying force, the adhesion to SL-PS increases in the order of PEG-(DOPA)(4) < PEG-(DOPA)(4) + (IO4)(-) hydrogel < PEG-(DOPA)(4) + (Cr2O7)(2-) hydrogel with the percentages of surface coverages 65%, 76% and 93%, respectively. Although, neither of PEG-(DOPA)(4) polymer and (IO4)(-) induced PEG-(DOPA)(4) hydrogel adhere to SL-SiO2 nanoparticle spontaneously, (Cr2O7)(2-) induced PEG-(DOPA)(4) hydrogel adhere to SL-SiO2 with a 59% of surface coverage. These results show that gelation mechanisms of DOPA have effect on the spontaneous adhesion of DOPA to the wet surfaces even for the hydrophilic silica surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available