4.1 Article

Inhibition of the GTPase dynamin or actin depolymerisation initiates outward plasma membrane tubulation/vesiculation (cytoneme formation) in neutrophils

Journal

BIOLOGY OF THE CELL
Volume 107, Issue 5, Pages 144-158

Publisher

WILEY-BLACKWELL
DOI: 10.1111/boc.201400063

Keywords

actin depolymerisation; cytonemes; dynamin; dynasore; membrane tubular invaginations

Categories

Funding

  1. Russian Foundation of Basic Research [13-04-00393, 13-04-00496]

Ask authors/readers for more resources

Background informationIn a previous study, we demonstrated that human neutrophils can develop membrane tubulovesicular extensions (TVEs) that are 160-250nm in width and several micrometres long. These extensions, or cytonemes, are capable of establishing long-range contacts with other cells or bacteria. Cytonemes consist of membrane tubules and vesicles of a uniform diameter aligned in a row. The mechanism of membrane tubulation/vesiculation to form cytonemes remains unknown. Upon endocytosis, the GTPase dynamin and an intact actin cytoskeleton are required for endocytic vesicles scission from the plasma membrane. ResultsWe examined the effects of dynasore (a dynamin specific inhibitor), and of cytochalasin D and latrunculin A (actin cytoskeleton disruption agents), on cytoneme formation in neutrophils. Scanning and transmission electron microscopy were used to observe cytoneme formation. High-performance chromatography and mass spectrometry were used to estimate the protein composition of the cytonemes. In neutrophils, dynasore and cytochalasin D or latrunculin A initiated the formation of tubular cytonemes that were similar in diameter and composition. The formation of cytonemes in cells treated with cytochalasin D was accompanied by the appearance of tubular invaginations of the same diameter on the plasma membrane of neutrophils. The formation of dynasore- or cytochalasin D-induced cytonemes, however, was blocked by the nitric oxide (NO) synthases inhibitor l-NAME, indicating that NO is involved in cytoneme development. Proteome analysis indicated that dynasore- or cytochalasin D-induced cytonemes are secretory protrusions that contain neutrophil bactericides along with cytoplasmic proteins, such as glycolytic enzymes and actin cytoskeleton components. ConclusionsInhibition of dynamin with dynasore or actin depolymerisation with cytochalasin D or latrunculin A might impair the membrane fusion/fission events that are required for the separation of secretory vesicles from the plasma membrane and from each other. As a result, the secretory process extends from the cells as membrane TVEs or cytonemes. Modification of secretion gives neutrophils the possibility to communicate with other cells over distance via highly adhesive cellular secretory protrusions (cytonemes). Cytonemes deliver their membrane-packed content exactly to the destination without dilution and without harm to the surrounding tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available