4.7 Article

Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 368, Issue -, Pages 602-612

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2019.01.093

Keywords

Activated carbon; Coal fly ash; Cassava residues; Adsorption; Sulfamethoxazole

Funding

  1. China-Japan Research Cooperative Program [2016YFE0118000]
  2. Scientific and Technological Major Special Project of Tianjin City [16YFXTSF00420]
  3. CAS-TWAS

Ask authors/readers for more resources

The increasing release of pharmaceutical and personal care products (PPCPs) into water poses serious threats to human beings. In this study, a novel core-shell activated carbon (CSAC) material with a high-mechanical strength porous ceramic shell was synthesized and tested by adsorbing sulfamethoxazole (SMX) from aqueous solutions. An activated carbon core (AC core) was synthesized from a mixture of powder AC (92%) and cassava waste splinters binder (8%). Moreover, a shell with a high thickness of 0.13 cm and compressive strength (2.92 MPa) was generated from the mixture of coal fly ash and clay at ratio of 60:40. It demonstrated high protection of the AC core. The adsorption efficiency of SMX by CSAC attained 99.0% and 97.9% at initial concentrations of 5 and 10 mg L-1, respectively. Furthermore, 77.0, 68.6 and 60.4% of SMX were adsorbed at higher concentrations of 30, 50, and 100 mg L-1, respectively. The kinetics study demonstrated that the adsorption of SMX followed pseudo-second-order kinetics. Moreover, the sorption isotherm was better fitted to Freundlich isotherms. Finally, SMX adsorption on CSAC simultaneously depended on the pore texture of CSAC and the hydrophobic properties of SMX, as well as the pi-pi bonds and electrostatic interactions between them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Applied

Large-scale synthesis and catalysis of oleic acid-coated Fe2O3 for co-liquefaction of coal and petroleum vacuum residues

Zhi-Qiang Sun, Feng-Yun Ma, Xue-Jiao Liu, Hang-Hang Wu, Chun-Ge Niu, Xin-Tai Su, Jing-Mei Liu

FUEL PROCESSING TECHNOLOGY (2015)

Article Engineering, Environmental

Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content

Xuejiao Liu, Dengguo Lai, Yin Wang

JOURNAL OF HAZARDOUS MATERIALS (2019)

Article Materials Science, Multidisciplinary

Activated carbon supported nanoscale zero-valent iron composite: Aspects of surface structure and composition

Xuejiao Liu, Yin Wang

MATERIALS CHEMISTRY AND PHYSICS (2019)

Article Environmental Sciences

Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution

Zhiwei Li, Xuejiao Liu, Yin Wang

JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT (2020)

Article Environmental Sciences

Optimized synthesis of a core-shell structure activated carbon and its adsorption performance for Bisphenol A

Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Guangwei Yu, Yin Wang

SCIENCE OF THE TOTAL ENVIRONMENT (2019)

Article Environmental Sciences

The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal

Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Guangwei Yu, Yin Wang

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2020)

Article Engineering, Environmental

Research on synergistically hydrothermal treatment of municipal solid waste incineration fly ash and sewage sludge

Zhan Chen, Guangwei Yu, Yin Wang, Xuejiao Liu, Xingdong Wang

WASTE MANAGEMENT (2019)

Article Environmental Sciences

Adsorption performance and mechanisms of mercaptans removal from gasoline oil using core-shell AC-based adsorbents

Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Zhenjiao Xing, Beibei Pan, Guangwei Yu, Yin Wang

Summary: The study demonstrates that core-shell structured activated carbon can effectively remove sulfur-based pollutants in liquid fuels with good recovery and recyclability. Core-shell granulated activated carbon showed higher removal efficiency and was influenced by the pseudo-second-order kinetic model during adsorption.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2021)

Article Nanoscience & Nanotechnology

Flexible Poly(vinyl alcohol)/Reduced Graphene Oxide Coated Carbon Composites for Electromagnetic Interference Shielding

Dengguo Lai, Xiaoxiao Chen, Xuejiao Liu, Yin Wang

ACS APPLIED NANO MATERIALS (2018)

Article Chemistry, Physical

Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

Fu-Tian You, Guang-Wei Yu, Yin Wang, Zhen-Jiao Xing, Xue-Jiao Liu, Jie Li

APPLIED SURFACE SCIENCE (2017)

Article Engineering, Environmental

Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX

Shun-Shun Chen, Xu-Xiu Chen, Tian-Yu Yang, Li Chen, Zheng Guo, Xing-Jiu Huang

Summary: A temperature-modulated sensing strategy was proposed to identify and determine BTEX compounds. Highly effective identification of BTEX was achieved using linear discrimination and convolutional neural network analyses. Additionally, quantitative analysis of concentration was accomplished by establishing the relationship between concentration and response.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease

Myungkyung Noh, Jeong Yeon Sim, Jisung Kim, Jee Hwan Ahn, Hye-Young Min, Jong-Uk Lee, Jong-Sook Park, Ji Yun Jeong, Jae Young Lee, Shin Yup Lee, Hyo-Jong Lee, Choon-Sik Park, Ho-Young Lee

Summary: This study reveals that chronic exposure to PM induces chronic inflammation and development of COPD by dysregulating NAD+ metabolism and subsequent SIRT1 deficiency in pulmonary macrophages. Activation of SIRT1 by resveratrol effectively mitigates PM-induced inflammation and COPD development. Targeting metabolic and epigenetic reprogramming in macrophages induced by PM is a promising strategy for COPD treatment.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67

Yu Liu, Linlin Qin, Yiming Qin, Tong Yang, Haoran Lu, Yulong Liu, Qiqi Zhang, Wenyan Liang

Summary: Co/NC/PAC electrode was prepared by compounding ZIF-67 with powder-activated carbon for the electrocatalytic treatment of nitrogen-containing heterocyclic compounds. The degradation efficiency of the four compounds reached 90.2-93.7% under optimal conditions, and the degradation order was pyridazine < pyrimidine < pyrazine < pyridine.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Yttrium speciation variability in bauxite residues of various origins, ages and storage conditions

Julien Couturier, Pierre Tamba Oulare, Blanche Collin, Claire Lallemand, Isabelle Kieffer, Julien Longerey, Perrine Chaurand, Jerome Rose, Daniel Borschneck, Bernard Angeletti, Steven Criquet, Renaud Podor, Hamed Pourkhorsandi, Guilhem Arrachart, Clement Levard

Summary: This study analyzes the properties of bauxite residue samples and explores the influence of bauxite ore origin, storage conditions, and storage time. The results show that the speciation of yttrium is related to the origin of bauxite ore, while no significant variation was observed with storage conditions or aging of the residues.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Trophic transfer and their impact of microplastics on estuarine food chain model

Sakthinarenderan Saikumar, Ravi Mani, Mirunalini Ganesan, Inbakandan Dhinakarasamy, Thavamani Palanisami, Dharani Gopal

Summary: Microplastic contamination in marine ecosystems poses a growing concern due to its trophic transfer and negative effects on marine organisms. This study investigates the transfer and impacts of polystyrene microplastics in an estuarine food chain. The results show that microplastics can be transferred through the food chain, although the transfer rates are low. The exposed organisms exhibit stress responses, suggesting the potential risk of microplastics reaching humans through the food chain.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Review Engineering, Environmental

Antibiotic resistance genes and heavy metals in landfill: A review

Yan-Jiao Li, Ying Yuan, Wen-Bing Tan, Bei-Dou Xi, Hui Wang, Kun-Long Hui, Jia-Bao Chen, Yi-Fan Zhang, Lian-Feng Wang, Ren-Fei Li

Summary: This review investigated and analyzed the distribution, composition, and abundance of heavy metals and antibiotic resistance genes (ARGs) in landfill. The results showed that heavy metals have lasting effects on ARGs, and complexes of heavy metals and organic matter are common in landfill. This study provides a new basis to better understand the horizontal gene transfer (HGT) of ARGs in landfill.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption

Jessy Joseph, Ari Vaisanen, Ajay B. Patil, Manu Lahtinen

Summary: Efficient and environmentally friendly porous hybrid adsorbent beads have been developed for the removal of arsenic from drinking water. The structural tuning of the adsorbents has been shown to have a significant impact on their adsorption performance, with high crystallinity leading to increased adsorption capacity and selectivity towards As5+.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment

Yangyang Liu, Minhua Xiao, Kaiqin Huang, Juntao Cui, Hongli Liu, Yingxin Yu, Shengtao Ma, Xihong Liu, Meiqing Lin

Summary: This study measured the levels of phthalate metabolites in breast milk collected from mothers in southern China. The results showed that phthalates are still prevalent in the region, and breastfeeding contributes to phthalate intake in infants. However, the levels detected do not pose significant health risks to infants based on dietary exposure. The increasing exposure to certain phthalates calls for further research into their sources and potential risks.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition

Zhiqiang Wu, Jianxing Sun, Liting Xu, Hongbo Zhou, Haina Cheng, Zhu Chen, Yuguang Wang, Jichao Yang

Summary: Ocean depth affects microbial diversity, composition, and co-occurrence patterns of microplastic microbial communities. Deterministic processes dominate the assembly of mesopelagic plastisphere microbial communities, while stochastic processes shape the assembly of bathypelagic microbial communities. The relationships between microorganisms in the mesopelagic layer are more complex and stable, with Proteobacteria and Actinobacteriota playing important roles.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction

Tingting Xiao, Renjie Chen, Chen Cai, Shijie Yuan, Xiaohu Dai, Bin Dong, Zuxin Xu

Summary: Based on the efficiency of catalytic ozonation techniques in enhancing sludge dewaterability, this study investigated its effectiveness in simultaneous reduction of antibiotics and antibiotic resistance genes. The results showed that catalytic ozonation conditioning changed the distribution of antibiotics and achieved high degradation rates. It also significantly reduced the abundance of ARGs, inhibited horizontal gene transfer, and decreased the signal transduction of typical ARGs host bacteria.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Unlocking the potential of ferrate(VI) in water treatment: Toward one-step multifunctional solutions

Yang Deng, Xiaohong Guan

Summary: This article discusses two different development approaches for ferrate(VI) technology in water treatment, arguing that process integration is a promising method that can drive technological innovation and revolution in water treatment, achieving higher treatment efficiency, reduced costs and energy consumption, and a smaller physical footprint.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Floating Catalytic Foam with prominent heat-induced convection for the effective photocatalytic removal of antibiotics

Zhe Zhang, Lu Zhang, Zhihao Huang, Yuxin Xu, Qingqing Zhao, Hongju Wang, Meiqing Shi, Xiangnan Li, Kai Jiang, Dapeng Wu

Summary: In this study, a floating catalytic foam was designed and prepared to enhance the mass transfer in immobilized photocatalysts for wastewater treatment. The floating catalytic foam could float on the water surface and establish a temperature gradient, effectively promoting the diffusion and adsorption of target molecules during the photocatalytic process.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L.) and its alleviation through zinc fortification

Muhammad Nafees, Adiba Khan Sehrish, Sarah Owdah Alomrani, Linlin Qiu, Aasim Saeed, Shoaib Ahmad, Shafaqat Ali, Hongyan Guo

Summary: The accumulation of cadmium and antibiotics in edible plants and fertile soil is a worldwide problem. This study investigated the potential of zinc oxide nanoparticles to alleviate the toxicity of both cadmium and antibiotics and promote spinach growth.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Aminoalkyl organosilicon with dual chemical sites for SO2 absorption and analysis of site-specific absorption entropy and enthalpy

Lurui Wan, Kai Wang, Yuan Chen, Zhiyong Xu, Wenbo Zhao

Summary: In this study, a low viscosity and high thermal stability SO2 absorbent with dual interacting sites was successfully synthesized. The absorbent showed the highest absorption enthalpy change and entropy change values among reported SO2 absorbents, and exhibited lower viscosity and comparable thermal stability to ILs.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism

Zhengwei Zhou, Guojie Ye, Yang Zong, Zhenyu Zhao, Deli Wu

Summary: This study utilized Mo powder and STPP to enhance the performance of the sodium percarbonate system in pollutant degradation. The presence of Mo and STPP resulted in a higher degradation rate of the model pollutant SMX, with low oxidant consumption. The system generated multiple active species through a series of chain reactions at different pH values, exhibiting excellent performance towards electron-rich pollutants. Furthermore, Mo demonstrated excellent stability and reusability.

JOURNAL OF HAZARDOUS MATERIALS (2024)