4.7 Article

Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 15, Issue 5, Pages 3044-3055

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00183

Keywords

-

Ask authors/readers for more resources

We assess several generalized gradient approximations (GGAs) and Laplacian-level meta-GGAs (LL-MGGA) kinetic energy (KE) functionals for orbital-free density functional theory calculations of bulk metals and semiconductors, considering equilibrium distances, bulk moduli, total and kinetic energies, and the electron densities. We also considered the effects of the pseudopotentials, the vacancy formation energies, and the bond lengths of molecular dimers. We found that LL-MGGA KE functionals are distinctively superior to GGA functionals, showing the importance of the Laplacian of the density in the functional construction. We extended the recently developed Pauli-Gaussian second-order and Laplacian (PGSL) functional (J. Phys. Chem. Lett. 2018, 9, 4385, DOI: 10.1021/acs.jpclett.8b01926) including high-order corrections, achieving higher transferability and accuracy than conventional nonlocal functionals based on the Lindhard response function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available