4.7 Article

Strength and electrical conductivity behavior of nanoparticles reaction on new alumina dispersion-strengthened copper alloy

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 798, Issue -, Pages 616-621

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.05.271

Keywords

Copper alloys; Alumina dispersion-strengthened copper; Tensile strength; Electrical conductivity

Funding

  1. National Natural Science Foundation of China [51574058, 51771041, 51571160]

Ask authors/readers for more resources

Alumina dispersion-strengthened copper (ADSC) alloy is a new materials widely used in lead frames, resistance welding electrodes, etc. The paper has systematically studied the strength and electrical conductivity behavior in situ reaction using rare-earth La and Ce. Solving the clustering on nanoparticles Al2O3 under spark plasma sintering (SPS) and addition of La and Ce for ADSC alloy is the significant differences. Specimen of Cu-0.7 wt% Al2O3 added with 0.7 wt% Ce does not present pores in SEM and BSE images due to special dispersed element Ce. A new ADSC alloy fabricated with Cu-0.7 wt%Al2O3-0.7 wt% Ce under SPS shows the high -strength and the high-conductivity. Nanoparticles Al2O3 encircled with nanoparticles CeO2 and Cu2O, which is generated in situ are evenly distributed in the Cu matrix, resulting in increasing strength. Lattice distortion does not occur in the new ADSC alloy. Cu atoms are replaced by Al generated in situ to form a solid solution with a face-centered cubic structure owing to the similar atomic radii and electronegativities of Cu and Al, resulting in increasing the electrical conductivity. Experimental results show that adding rare-earth metal nanoparticles Ce can significantly improve the properties of ADSC alloy. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available