4.1 Article

Effects of Cooling Ways on the Structure of Polypropylene Hollow Fiber Membranes Prepared by Stretching

Journal

INTERNATIONAL POLYMER PROCESSING
Volume 34, Issue 2, Pages 172-181

Publisher

CARL HANSER VERLAG
DOI: 10.3139/217.3638

Keywords

-

Funding

  1. Science and Technology program of Guizhou province [[2018] 2183]
  2. Science and Technology major project of Guizhou province [[2015] 6005]

Ask authors/readers for more resources

Air, water, and DINCH (Di-isononyl-cyclohexane-1,2-dicarboxylate) were selected as the cooling media to prepare polypropylene hollow fiber membranes by melt spinning. The effects of various cooling ways with different cooling rates on the row-nucleated lamellar crystallization were investigated. The crystallinity, orientation and arrangement of the crystals were examined by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS). Membrane morphology was observed by SEM. The less uniform pores, a layer of amorphous phase, and only a small part of slit-shaped pores were observed on the surface of samples when water and DINCH were used as the heat transfer medium because the fast cooling rate froze the surface molecules and decreased the crystallinity and orientation. However, when air was used as the cooling medium, the higher crystallinity and the better orientation of the annealed hollow fibers were obtained mainly due to the slow cooling rate. Corresponding hollow fiber membranes prepared by stretching had better interconnectivity of pores and larger pure water flux. Thus this study explains why air was selected as the cooling medium to prepare polypropylene hollow fiber membranes which can have larger pure water flux. Also, it provides new insights into the structure control of polypropylene hollow fiber membranes by stretching in order to prepare membranes with high strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available