4.7 Article

One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties

Journal

INDUSTRIAL CROPS AND PRODUCTS
Volume 130, Issue -, Pages 230-236

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.indcrop.2018.12.085

Keywords

Biosynthesis; Dye removal; Iron coated silver nanoparticles; Iron nanoparticles; Microbial pollutions; Silver nanoparticles

Funding

  1. Iran National Science Foundation (INSF) [93043400]
  2. University of Auckland
  3. University of Waikato, New Zealand

Ask authors/readers for more resources

Bringing two completely different properties into one nanostructure by using individual metals is a difficult goal to achieve. However, recently core-shell metallic nanostructures have introduced as a novel multifunctional nanomaterial with enhanced properties. Iron and silver based nanoparticles are among the most widely applicable nanomaterials in modem industries. Zero-valent iron nanostructures and silver nanoparticles are well known for their applications as catalyst and antimicrobial agent, respectively. In the present study, for the first time, we are reporting a successful fabrication of zero valent iron coated silver nanoparticles (ZVI@AgNPs) by using a green and one-pot synthesis approach. Aqueous leaf extract of Mediterranean cypress (Cupressus sempervirens) was used as a natural source of reducing and capping agent for reduction of both Ag+ and Fe3+ ions. Prepared nanostructures were characterised by a range of analytical techniques namely UV-vis spectroscopy, Transmission Electron Microscopy, X-Ray Diffraction, and Fourier Transform Infra-Red Spectroscopy. The prepared nanostructures were found to be an effective material for dye removal and were capable to remove 98.5% of the initial dye just after 4 h. Based on the results, zero valent iron coating enhanced the antimicrobial potential of AgNPs against Gram-positive bacteria (S. aureus), while showing no significant enhancement against Gram-negative bacteria (E. coli). ZVI@AgNPs, therefore, can be introduced as a novel nanostructure for application in aquatic filter materials to simultaneously reduce microbial and organic contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available