4.7 Article

Global drivers of methane oxidation and denitrifying gene distribution in drylands

Journal

GLOBAL ECOLOGY AND BIOGEOGRAPHY
Volume 28, Issue 9, Pages 1230-1243

Publisher

WILEY
DOI: 10.1111/geb.12928

Keywords

abundance; community structure; denitrifiers; drylands; methanotrophs; richness

Ask authors/readers for more resources

Aim Microorganisms carrying pmoA and nosZ genes are major drivers of methane and nitrous oxide fluxes from soils. However, most studies on these organisms have been conducted in mesic ecosystems; therefore, little is known about the factors driving their distribution in drylands, the largest biome on Earth. We conducted a global survey to evaluate the role of climate- and soil-related variables as predictors of the richness, abundance and community structure of bacteria carrying pmoA and nosZ genes. Location Eighty dryland ecosystems distributed worldwide. Time period From February 2006 to December 2011. Major taxa studied Methanotrophic (carrying the pmoA gene) and denitrifiying (carrying the nosZ gene) bacteria. Methods We used data from a field survey and structural equation modelling to evaluate the direct and indirect effects of climatic (aridity, rainfall seasonality and mean annual temperature) and soil (organic carbon, pH and texture) variables on the total abundance, richness and community structure of microorganisms carrying pmoA and nosZ genes. Results Taxa related to Methylococcus capsulatus or Methylocapsa sp., often associated with mesic environments, were common in global drylands. The abundance and richness of methanotrophs were not associated with climate or soil properties. However, mean annual temperature, rainfall seasonality, organic C, pH and sand content were highly correlated with their community structure. Aridity and soil variables, such as sand content and pH, were correlated with the abundance, community structure and richness of the nosZ bacterial community. Main conclusions Our study provides new insights into the drivers of the abundance, richness and community structure of soil microorganisms carrying pmoA and nosZ genes in drylands worldwide. We highlight how ongoing climate change will alter the structure of soil microorganisms, which might affect the net CH4 exchange and will probably reduce the capacity of dryland soils to carry out the final step of denitrification, favouring net N2O emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available