4.7 Article

Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants

Journal

ENVIRONMENTAL POLLUTION
Volume 252, Issue -, Pages 493-500

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.05.077

Keywords

Secondary organic aerosol; Isoprene; Monoterpene; beta-Caryophyllene; Anthropogenic pollutants; Biomass burning

Funding

  1. National Key RD Plan [2017YFC0210000]
  2. China National Natural Science Funds for Distinguished Young Scholars [41325014]
  3. National Natural Science Foundation of China [41773117]

Ask authors/readers for more resources

Thirteen secondary organic aerosol (SOA) tracers of isoprene, monoterpenes and sesquiterpenes were measured for PM2.5 aerosols collected at the summit of Mt. Wuyi (1139 m, a.s.l.), to investigate their seasonality and formation mechanism. Concentrations of the isoprene and monoterpene SOA tracers were much higher in summer than those in other seasons. In contrast, beta-caryophyllinic acid was found to be the lowest in summer. Concentrations of those BSOA tracers showed a positive correlation with temperature (R-2 = 0.52-0.70), and a negative correlation with relative humidity (R-2 = 0.43-0.78). Moreover, thermodynamic model (i.e., ISORROPIA-II) calculation results showed that acidity conditions are favorable for BSOA formation. Robust linear correlations between the BSOA tracers and anthropogenic pollutants such as SO2 (R-2 = 0.53-0.7) and NO2 (R-2 = 037-0.54) were observed for all the samples, suggesting that SO2 and NOx can enhance BSOA production in the remote mountain area of southeast China, which is related to an acid-catalyzed heterogeneous chemistry. Moreover, we also found a significant correlation between the concentrations of the BSOA tracers and levoglucosan especially for beta-caryophyllinic acid, indicating that biomass burning plumes from the distant lowland regions could influence the production of BSOA in the mountain free troposphere. Our results clearly demonstrated that anthropogenic emissions in China could enhance BSOA formation in the distant mountain regions. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available