4.7 Article

Bacterial community and eutrophic index analysis of the East Lake

Journal

ENVIRONMENTAL POLLUTION
Volume 252, Issue -, Pages 682-688

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.05.138

Keywords

Bacterial eutrophic index; Trophic state index; East lake; Bacterial community; Water quality

Funding

  1. Guangdong Provincial Key Laboratory of Fishery Ecology and Environment [FEEL 2017-4]
  2. National Natural Science Foundation of China [51808416]
  3. China Scholarship Council [[2018] 10006]

Ask authors/readers for more resources

This study investigated bacterial diversities in surface water and sediment of the East Lake located in Wuhan, China. Bacterial community of lake water was mainly composed of Proteobacteria (31.1%), Actinobacteria (25.0%), Bacteroidetes (18.6%), Cyanobacteria (18.9%), Planctomycetes (2.4%) and Verrucomicrobia (1.4%), while more abundant and richer bacterial community was found in the sediments, e.g. 46.1% for Proteobacteria, 10.1% for Bacteroidetes, 8.7% for Chloroflexi, 8.4% for Acidobacteria, 5.0% for Cyanobacteria, 3.6% for Firmicutes, 3.1% for Planctomycetes, 2.8% for Actinobacteria and 2.3% for Nitrospirae. The decreased bacterial community richness and abundance was found in poor-quality water. Moreover, Bacterial Eutrophic Index (BEI) was firstly put forward to quantitatively describe the water quality of a freshwater ecosystem, which was defined as the ratio of abundance of Cyanobacteria and Actinobacteria in water. It was demonstrated BEI was well correlated to Carlson's Trophic State Index (TSI) (Spearman's rho = 0.848, p < 0.01). The average TSI and BEI were determined to be 64 and 0.81, suggesting that East Lake could be classified as a medium eutrophic level. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Agricultural Engineering

Granule size informs the characteristics and performance of microalgal-bacterial granular sludge for wastewater treatment

Meng Zhang, Bin Ji, Shulian Wang, Jun Gu, Yu Liu

Summary: This study found a strong correlation between extracellular polymeric substances of microalgal-bacterial granules and the granule size. The granule size had a positive effect on the removal of specific organics in wastewater, but a negative effect on ammonium and phosphorus removal. Granule size can be used as an indicator to reflect the synergistic interactions between microalgae and bacteria in microalgal-bacterial granules.

BIORESOURCE TECHNOLOGY (2022)

Article Environmental Sciences

Towards carbon neutrality and water sustainability: An integrated anaerobic fixed-film MBR-reverse osmosis-chlorination process for municipal wastewater reclamation

Siyu Wang, Hang Liu, Jun Gu, Meng Zhang, Yu Liu

Summary: An integrated AnfMBR-RO-chlorination process was developed to address the drawbacks of excessive sludge generation and high energy consumption in municipal wastewater reclamation. The process showed high removal rates of COD, phosphate, and NH4+-N, and significantly reduced energy consumption and greenhouse gas emissions compared to current methods, bringing municipal wastewater reclamation closer to carbon neutrality and water sustainability.

CHEMOSPHERE (2022)

Article Environmental Sciences

Waste cooking oil used as carbon source for microbial lipid production: Promoter or inhibitor

Zhen Gao, Yingqun Ma, Yu Liu, Qunhui Wang

Summary: This study developed a co-fermentation strategy using waste cooking oil (WCO) and food waste for microbial lipid production. It was found that adjusting the pH values within a certain range could increase lipid production efficiency. The produced lipid could potentially be used for biodiesel production, leading to significant reductions in CO2 and SO2 emissions from global food waste.

ENVIRONMENTAL RESEARCH (2022)

Article Environmental Sciences

Stability properties of natural estrogen conjugates in different aqueous samples at room temperature and tips for sample storage

Jun Zhang, Yi-ping Wan, Ze-hua Liu, Hao Wang, Zhi Dang, Yu Liu

Summary: The stability of C-NEs in aqueous environmental samples is influenced by different storage conditions, with low temperature of 4 degrees C leading to easy deconjugation, while pH of 3 and addition of HgCl2 can keep C-NEs intact at room temperature. Addition of HgCl2 is more convenient and practical for 24-h composite sampling.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2022)

Article Environmental Sciences

Sulfite may disrupt estrogen homeostasis in human via inhibition of steroid arylsulfatase

Jun Zhang, Shu-shu Zhong, Ke-meng Zhao, Ze-hua Liu, Zhi Dang, Yu Liu

Summary: Sulfite can effectively inhibit arylsulfatase, potentially disrupting estrogen homeostasis in humans, which requires further investigation.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2022)

Review Environmental Sciences

Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions

Bin Ji

Summary: The non-aerated MBGS process is an effective wastewater treatment method that enriches pollutants into biomass, which can be utilized as biofertilizer and feed. The formation mechanism and key environmental factors of this process are comprehensively analyzed and discussed.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Environmental Sciences

Twelve natural estrogens in urines of swine and cattle: Concentration profiles and importance of eight less-studied

Zhao Tang, Yi-Ping Wan, Ze-Hua Liu, Hao Wang, Zhi Dang, Yu Liu

Summary: This study reveals the presence of eight less-studied natural estrogens in the urine of swine and cattle, showing that these estrogens are widely distributed and vary in frequency among different livestock.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Engineering, Environmental

CO2 improves the microalgal-bacterial granular sludge towards carbon-negative wastewater treatment

Bin Ji, Cheng Liu

Summary: In this study, it was demonstrated that CO2 can effectively enhance the physical structure and stability of microalgal-bacterial granular sludge (MBGS), improve the removal efficiency of organics and phosphorus, and provide additional carbon source and buffering capacity for the MBGS system in wastewater treatment. Furthermore, CO2 supply could potentially lead to a carbon-negative objective and eliminate carbon emissions, making it a promising strategy for environment-sustainable wastewater treatment.

WATER RESEARCH (2022)

Article Agricultural Engineering

A mainstream anammox fixed-film membrane bioreactor with novel sandwich-structured carriers for fast start-up, effective sludge retention and membrane fouling mitigation

Meng Zhang, Jun Gu, Siyu Wang, Yu Liu

Summary: Novel sandwich-structured carriers were developed for fast immobilization of anammox sludge, establishing a fixed film membrane bioreactor for municipal wastewater treatment. Results showed rapid start-up of the reactor without lag phase, with high nitrogen removal efficiency and low membrane fouling. The activity of anammox sludge stabilized in the carriers, enriching Candidatus Kuenenia as the dominant anammox bacteria for promising alternative in mainstream anammox process.

BIORESOURCE TECHNOLOGY (2022)

Review Agricultural Engineering

Resource recovery from municipal wastewater: A critical paradigm shift in the post era of activated sludge

Xiaoyuan Zhang, Yu Liu

Summary: This article discusses the challenges faced by the conventional activated sludge process in the face of accelerating global climate change and explores potential wastewater treatment technologies and pathways towards achieving carbon neutrality.

BIORESOURCE TECHNOLOGY (2022)

Article Environmental Sciences

Auto-floating oxygenic microalgal-bacterial granular sludge

Yuting Shi, Bin Ji, Xiaoyuan Zhang, Yu Liu

Summary: The microalgal-bacterial granular sludge (MBGS) process, as a new green wastewater treatment technology, was evaluated for its performance in treating municipal wastewater under outdoor conditions. The study discovered the auto-floating phenomenon and its causes.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Environmental Sciences

Multi-parameter control-based operation strategy for mainstream deammonification in an integrated anaerobic biofilm reactor-step feed MBR

Yi-Kun Geng, Jun Gu, Xiaoyuan Zhang, Zhuan Khai Lim, Yishuai Jiang, Meng Zhang, Yan Zhou, Yu Liu

Summary: This study developed an innovative A-B process for carbon-neutral wastewater treatment by combining an anaerobic biofilm reactor (AnBR) as the A stage for energy recovery and a step-feed membrane bioreactor (MBR) as the B stage for mainstream deammonification. A multi-parameter control-based operation strategy was developed to address the challenge of selectively retaining ammonia-oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB). Results showed that this process configuration achieved high removal rates of COD, ammonium-N, and total nitrogen, while promoting the growth and enrichment of anammox bacteria.

CHEMOSPHERE (2023)

Article Environmental Sciences

Development, performance and microbial community analysis of a continuous-flow microalgal-bacterial biofilm photoreactor for municipal wastewater treatment

Xiaoyuan Zhang, Bin Ji, Junli Tian, Yu Liu

Summary: This study reported the development, performance, and microbial community of microalgal-bacterial biofilms for municipal wastewater treatment in a continuous-flow photoreactor. The results showed that microalgal-bacterial biofilms were successfully developed without external aeration. The biofilm concentrations reached steady-state at 4690 mg/L with a hydraulic retention time (HRT) of 9 h. Increasing HRT to 12 h did not enhance the biofilm accumulation but resulted in faster growth of microalgae, while the chlorophyll-a&b content in biofilms stabilized after the initial stage. Performance analysis revealed that microalgal-bacterial biofilms removed 90% of TOC, 71.4% of total nitrogen, and 72.6% of phosphorus in the steady-state photoreactor run at an HRT of 12 h with external aeration. Cyanobacteria and Chloroflexi were the dominant components, while Chlorophyta dominated the eukaryotic algal community in biofilms. This study provides insights into the development of microalgal-bacterial biofilms for sustainable low-carbon municipal wastewater treatment in continuous-flow photoreactors.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Review Agricultural Engineering

Microalgal capture of carbon dioxide: A carbon sink or source?

Xiaoyuan Zhang, Lei An, Junli Tian, Bin Ji, Jinfeng Lu, Yu Liu

Summary: This article provides a preliminary analysis on the carbon capture potential of microalgal cultivation, indicating that the energy consumption and nutrient input can result in significant indirect carbon emissions, making microalgal carbon capture less effective. The current processes may not be environmentally sustainable and economically viable, thus renewable energy and cheap nutrient sources should be explored to reduce indirect carbon emissions and promote complete nutrient recycling through using microalgae as biofertilizers or aquafeeds.

BIORESOURCE TECHNOLOGY (2023)

Review Environmental Sciences

Efficiency of the bank filtration for removing organic priority substances and contaminants of emerging concern: A critical review

Attila Csaba Kondor, Anna Viktoria Vancsik, Laszlo Bauer, Lili Szabo, Zoltan Szalai, Gergely Jakab, Gabor Maasz, Marta Pedrosa, Maria Jose Sampaio, Ana Rita Lado Ribeiro

Summary: This review provides a critical overview of research on the removal efficiency of priority substances and compounds of emerging concern through bank filtration, discussing influencing factors and future challenges. The findings show that the efficiency of bank filtration is influenced by multiple factors and varies for different substances.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Association of exposure to ozone and fine particulate matter with ovarian reserve among women with infertility

Xinyan Wang, Shuai Zhang, Huihui Yan, Zhao Ma, Yunshan Zhang, Haining Luo, Xueli Yang

Summary: This study investigated the association between ambient PM2.5, O3 pollution, and ovarian reserve in reproductive-aged Chinese women. The results showed that increased exposure to PM2.5 and O3 was associated with decreased AMH levels, indicating reduced ovarian reserve. Notably, the effects of O3 exposure on ovarian reserve were different from those of PM2.5 exposure.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Effects of acute and chronic chromium stress on the expression of heat shock protein genes and activities of antioxidant enzymes in larvae of Orthetrum albistylum

Tingting Ma, Yanjuan Ding, Fengjiao Xu, Chen Zhang, Min Zhou, Ya Tang, Yanrong Chen, Yating Wen, Rufei Chen, Bin Tang, Shigui Wang

Summary: The dragonfly species Orthetrum albistylum can accumulate heavy metals, and its heat shock protein genes have the potential to serve as biomarkers for monitoring environmental pollutants.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure?

Naoto Ishiwaka, Koya Hashimoto, Masayoshi K. Hiraiwa, Francisco Sanchez-Bayo, Taku Kadoya, Daisuke Hayasaka

Summary: Systemic insecticides and rising temperatures have combined effects on the abundance of Odonata nymphs in paddy fields. The standalone effect of insecticide exposure decreased the Odonata community, while nymphs decreased synergistically with temperature rise in paddy water. However, the impacts of each stressor alone varied among species.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

The seasonal change of PAHs in Svalbard surface snow

Marco Vecchiato, Carlo Barbante, Elena Barbaro, Francois Burgay, Warren R. L. Cairns, Alice Callegaro, David Cappelletti, Federico Dallo, Marianna D'Amico, Matteo Feltracco, Jean-Charles Gallet, Andrea Gambaro, Catherine Larose, Niccolo Maffezzoli, Mauro Mazzola, Ivan Sartorato, Federico Scoto, Clara Turetta, Massimiliano Varde, Zhiyong Xie, Andrea Spolaor

Summary: The Arctic region is facing contamination from long-range pollution and local human activities. Polycyclic Aromatic Hydrocarbons (PAHs) are used as environmental indicators for emission, transport, and deposition processes. Research conducted in the Arctic surface snow in Ny-Ålesund, Svalbard from October 2018 to May 2019 shows that long-range inputs of PAHs mainly occur in winter, while the most abundant analyte retene exhibits opposite seasonal trends.

ENVIRONMENTAL POLLUTION (2024)

Review Environmental Sciences

A broad horizon for sustainable catalytic oxidation of microplastics

Maoshui Zhuo, Zhijie Chen, Xiaoqing Liu, Wei Wei, Yansong Shen, Bing-Jie Ni

Summary: This paper discusses the application of three catalytic processes (photocatalysis, electrocatalysis, and biocatalysis) in the management of microplastic pollution, and introduces the efficiency and catalytic mechanisms of different catalysts. It also proposes the development prospects for sustainable management of microplastic pollution.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

A physiologically based pharmacokinetic model of diethyl phthalates in humans

Shiyu Chen, Zhenzhen Shi, Qiang Zhang

Summary: In this study, a human physiologically based pharmacokinetic (PBPK) model of diethyl phthalate (DEP) was developed to assess its toxicity. The model considers the distribution and metabolism of DEP and its active metabolite monoethyl phthalate (MEP) in different tissue compartments. Sensitivity analysis and Bayesian Markov chain Monte Carlo (MCMC) simulations were performed to evaluate the uncertainty and variability of the model parameters. The results suggest that dermal absorption is an important route of exposure to DEP in the environment.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Exploring a chemical input free advanced oxidation process based on nanobubble technology to treat organic micropollutants

Bangguo Wang, Lijing Wang, Wenxi Cen, Tao Lyu, Peter Jarvis, Yang Zhang, Yuanxun Zhang, Yinghui Han, Lei Wang, Gang Pan, Kaili Zhang, Wei Fan

Summary: This study investigates the feasibility and mechanisms of a chemical-free nanobubble-based AOP for treating organic micropollutants in water. The results show that the oxygen nanobubble AOP has a significantly higher removal efficiency compared to air and nitrogen nanobubbles. The treatment performance is not affected by pH and the presence of ions. Higher initial concentrations of the micropollutant lead to slower treatment processes, but similar removal performance is achieved in the end. The presence of organic matter reduces the removal rate of the micropollutant. The results have practical feasibility for water and wastewater treatment.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Insights into the reduction of methylmercury accumulation in rice grains through biochar application: Hg transformation, isotope fractionation, and transcriptomic analysis

Yingmei Huang, Jicai Yi, Yao Huang, Songxiong Zhong, Bin Zhao, Jing Zhou, Yuxuan Wang, Yiwen Zhu, Yanhong Du, Fangbai Li

Summary: This study investigates the impact of biochar on methylmercury (MeHg) accumulation in rice. The results show that biochar reduces MeHg levels in paddy soils by decreasing bioavailable Hg and microbial Hg methylation. Additionally, biochar decreases the uptake and translocation of MeHg in rice plants, resulting in a reduction of MeHg accumulation in rice grains.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Expeditious profiling of polycyclic aromatic hydrocarbons transport and obstruction mechanisms in crop xylem sap proteins via proteomics and molecular docking

Nengde Zeng, Fei Huang, Jiani Du, Chenghao Huang, Qian Yang, Xinhua Zhan, Baoshan Xing

Summary: This study investigates the protein targets and protein-ligand interactions related to PAH contamination in crop xylem sap using computational tools. The results show that phenanthrene has a more pronounced effect on the xylem sap proteins of maize and wheat, with maize DEPs associated with lipid biosynthesis and wheat DEPs exhibiting an increase in ABC transporters. This study provides insights into the regulation and movement of PAHs within plant xylem.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Plasma-assisted assembly of Co3O4/TiO2-NRs for photoelectrocatalytic degradation of bisphenol A in solution and muddy systems

Xinwei Chen, Hao Ma, Run Wang, Man Wang, Binbin Zhu, Yanqing Cong, Xiayue Zhu, Guoqin Wang, Yi Zhang

Summary: Co3O4/TiO2-NRs electrodes with excellent photoresponse were prepared via plasma-assisted modification of Co3O4 on TiO2. The combination of Co3O4 and TiO2 improved the light utilization efficiency and showed potential for degradation of pollutants.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Carbon emissions from various natural gas end-use sectors for 31 Chinese provinces between 2017 and 2021

Wenjing Ji, Liying Song, Jing Wang, Hongqing Song

Summary: This study conducted a life-cycle assessment to examine the correlation between natural gas consumption and carbon emissions in different end uses in China. The results showed that both natural gas consumption and life-cycle carbon emissions have been increasing since 2017. Significant variations in NG life-cycle carbon emissions were found across different provinces and sectors, highlighting the need for targeted efforts to reduce carbon emissions.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Synergistic effects of trace sulfadiazine and corrosion scales on disinfection by-product formation in bulk water of cast iron pipe

Youyi Chen, Boxuan Zhang, Pojun Zhang, Guogui Shi, Hao Liang, Wu Cai, Jingyu Gao, Sumin Zhuang, Kaiyin Luo, Jiaqi Zhu, Chaoxiang Chen, Kunyu Ma, Jinrong Chen, Chun Hu, Xueci Xing

Summary: The synergistic effects of trace sulfadiazine and cast-iron corrosion scales on the formation of disinfection by-products in drinking water distribution systems were investigated. The presence of magnetite resulted in increased concentrations of DBPs due to the higher microbial activity and enhanced microbial extracellular electron transport pathway. The study highlights the importance of considering trace antibiotics pollution and corrosion scales in water sources for DBP control.

ENVIRONMENTAL POLLUTION (2024)

Review Environmental Sciences

The update and transport of aluminum nanoparticles in plants and their biochemical and molecular phototoxicity on plant growth and development: A systematic review

Bishwa Raj Pokharel, Vijay Sheri, Manoj Kumar, Zhiyong Zhang, Baohong Zhang

Summary: This review summarizes the interactions, uptake, and transport of aluminum nanoparticles (Al-NPs) in plants, highlighting their negative effects on plant growth and development, as well as their potential to alter plant defense systems and gene expression.

ENVIRONMENTAL POLLUTION (2024)

Article Environmental Sciences

Disturbance mitigation of thiencarbazone-methyl•isoxaflutole on bacterial communities through nitrification inhibitor and attapulgite

Yonglu Wang, Fengsong Zhang, Xiaoyong Liao, Xiao Yang, Guixiang Zhang, Liyun Zhang, Chaojun Wei, Pengge Shi, Jiongxin Wen, Xiaorong Ju, Can Xu, Yang Liu, Ying Lan

Summary: This study aims to explore the effects of thiencarbazone-methyl center dot isoxaflutole on soil microflora and the potential mitigation mechanisms to bacterial communities. It was found that increasing the application of thiencarbazone-methyl center dot isoxaflutole resulted in increased stress on soil bacterial community structure and diversity. Increasing soil pH was recognized as a key factor in improving the diversity and structure of soil microflora. Supplemental use of nitrapyrin or modified attapulgite can increase soil pH and improve bacterial diversity.

ENVIRONMENTAL POLLUTION (2024)