4.7 Article

Smart graphene-cellulose paper for 2D or 3D origami-inspired human stem cell support and differentiation

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 176, Issue -, Pages 87-95

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2018.12.040

Keywords

Graphene; Cellulose; Paper; Adipose-derived stem cells; Bone; 3D tissue engineering

Funding

  1. Australian Research Council (ARC) Centre of Excellence Scheme [CE140100012]
  2. ARC [FL110100196]
  3. ARC Industrial Transformation Training Centre in Additive Biomanufacturing [IC160100026]
  4. Australian National Fabrication Facility (ANFF)-Materials Node

Ask authors/readers for more resources

Graphene-based materials represent advanced platforms for tissue engineering and implantable medical devices. From a clinical standpoint, it is essential that these materials are produced using non-toxic and non-hazardous methods, and have predictable properties and reliable performance under variable physiological conditions; especially when used with a cellular component. Here we describe such a biomaterial, namely smart graphene-cellulose (G-C) paper, and its suitability for traditional planar two-dimensional (2D) or three-dimensional (3D) human cell support, verified by adipose-derived stem cell (ADSC) culture and osteogenic differentiation. G-C paper is prepared using commercially available cellulose tissue paper as a substrate that is coated by immersion deposition with graphene oxide (GO) followed by reduction to reduced graphene oxide (RGO) without the use of toxic organic solvents. The fabrication process is amenable to large scale production and the resultant papers have low electrical resistivity (up to similar to 300 Omega/sq). Importantly, G-C papers can be configured to 3D constructs by lamination with alginate and further modified by folding and rolling for 3D origami-inspired cell-laden structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Biomaterials

Current and future perspectives on biomaterials for segmental mandibular defect repair

D. S. Abdullah Al Maruf, Krishnan Parthasarathi, Kai Cheng, Payal Mukherjee, David R. McKenzie, Jeremy M. Crook, Gordon G. Wallace, Jonathan R. Clark

Summary: This review focuses on the recent progresses in modulating the physiochemical properties and applications of biomaterials in bone tissue engineering (BTE) for mandibular segmental defect repair. BTE is an important strategy for reconstructing critical-sized bone defects and improving patients' quality of life.

INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS (2023)

Article Engineering, Environmental

Wet spinning of hollow graphene fibers with high capacitance

Kezhong Wang, Yunfeng Chao, Zhiqi Chen, Sepidar Sayyar, Caiyun Wang, Gordon Wallace

Summary: A facile coaxial wet-spinning method was used to continuously produce hollow graphene fibers with high conductivity and flexibility. The resulting fibers exhibited outstanding electrochemical and mechanical properties, making them promising candidates for use in wearable supercapacitors and electronics.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Polymer Science

Electrowriting of silk fibroin: Towards 3D fabrication for tissue engineering applications

Abdul Moqeet Hai, Zhilian Yue, Stephen Beirne, Gordon Wallace

Summary: Electrowriting combines 3D printing and electrospinning to produce complex structures with submicron resolutions. This study demonstrates the compatibility of water-based silk fibroin ink with electrowriting and explores the optimization of ink composition and process parameters. The electrowriting of hydrophilic silk fibroin has the potential to create material structures with biological properties similar to natural systems.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Chemistry, Multidisciplinary

A biocompatible and fully erodible conducting polymer enables implanted rechargeable Zn batteries

Xiaoteng Jia, Xuenan Ma, Li Zhao, Meiying Xin, Yulei Hao, Peng Sun, Chenguang Wang, Danming Chao, Fangmeng Liu, Caiyun Wang, Geyu Lu, Gordon Wallace

Summary: Implanted rechargeable batteries with biodegradable properties are highly desirable, but limited by the lack of suitable electrode materials. In this study, we present a molecular engineering strategy to develop erodible poly(3,4-ethylenedioxythiophene) (PEDOT) with hydrolyzable carboxylic acid pendants. The compact rechargeable Zn battery with this material demonstrates high capacity and cycling stability, and shows complete biodegradation and biocompatibility in vivo. This strategy offers potential for developing implantable conducting polymers with predetermined degradation profiles and high energy storage capability.

CHEMICAL SCIENCE (2023)

Correction Multidisciplinary Sciences

Author Correction: Topical application of an irreversible small molecule inhibitor of lysyl oxidases ameliorates skin scarring and fibrosis( doi 10.1038/s41467-022-33148-5, 22 sep, 2022 )

Nutan Chaudhari, Alison D. Findlay, Andrew W. Stevenson, Tristan D. Clemons, Yimin Yao, Amar Joshi, Sepidar Sayyar, Gordon Wallace, Suzanne Rea, Priyanka Toshniwal, Zhenjun Deng, Philip E. Melton, Nicole Hortin, K. Swaminathan Iyer, Wolfgang Jarolimek, Fiona M. Wood, Mark W. Fear

NATURE COMMUNICATIONS (2023)

Article Multidisciplinary Sciences

An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery

Yan Zhou, Xiaoteng Jia, Daxin Pang, Shan Jiang, Meihua Zhu, Geyu Lu, Yaping Tian, Caiyun Wang, Danming Chao, Gordon Wallace

Summary: The authors propose a simplified wearable iontophoresis patch with a built-in Mg battery for efficient and controllable transdermal delivery. This patch eliminates the conventional interface impedance between the electrode and drug reservoir, reducing system complexity and size. The delivery dosage can be easily manipulated by tuning the viologen hydrogel and the iontophoresis stimulation mode.

NATURE COMMUNICATIONS (2023)

Article Electrochemistry

A Nitrogen-Doped Porous Carbon Supported Copper Catalyst from a Scalable One-Step Method for Efficient Carbon Dioxide Electroreduction

Amruthalakshmi Vijayakumar, Yong Zhao, Kezhong Wang, Yunfeng Chao, Haiqun Chen, Caiyun Wang, Gordon G. G. Wallace

Summary: In this study, a scalable one-step glucose blowing method was used to prepare a porous N-doped carbon supported Cu nanoparticles (Cu-NC) composite catalyst for CO2 electroreduction. The Cu-NC catalyst showed efficient catalytic activity for CO2-to-C1 product (CO and formate) conversion, with a high efficiency of 69% at an overpotential of 590 mV. The excellent catalytic activity is attributed to the structure of the composite and the presence of N-species in the carbonaceous matrix.

CHEMELECTROCHEM (2023)

Article Medicine, Research & Experimental

Novel Collagen Surgical Patches for Local Delivery of Multiple Drugs

Xiao Liu, Marius Berthel, Grishmi Rajbhandari, Ying Zhou, Philip M. Lewis, Zhilian Yue, Gordon G. Wallace

Summary: This research developed a collagen-based hybrid tissue repair patch that can integrate into surrounding tissue and control inflammatory responses for effective post-operative inflammation control. The patch enables simultaneous loading and release of multiple drugs with controllable ratios. The demonstration of co-encapsulation and release of anti-inflammatory dexamethasone and anti-epileptic phenytoin validates the dual drug delivery ability of this versatile composite material. The material's Young's modulus was increased to 20 KPa using a biocompatible riboflavin-induced UV light cross-linking strategy. This composite material has broad potential applications and warrants further research exploration.

MOLECULAR PHARMACEUTICS (2023)

Review Chemistry, Physical

Hydrogels for RNA delivery

Ruibo Zhong, Sepehr Talebian, Barbara B. Mendes, Gordon Wallace, Robert Langer, Joao Conde, Jinjun Shi

Summary: RNA-based therapeutics hold great promise in disease intervention, and hydrogels are attracting attention for controlled release of these therapeutics. Hydrogels offer advantages such as biodegradability, tunable physiochemical properties, and precise spatiotemporal control over RNA release.

NATURE MATERIALS (2023)

Article Biochemistry & Molecular Biology

Fabrication and Characterization of an Electro-Compacted Collagen/Elastin/Hyaluronic Acid Sheet as a Potential Skin Scaffold

Lingzhi Kang, Ying Zhou, Xifang Chen, Zhilian Yue, Xiao Liu, Chris Baker, Gordon G. Wallace

Summary: The development of biomimetic structures using integrated extracellular matrix (ECM) components provides a promising method for biomaterial fabrication. In this study, an artificial ECM consisting of collagen I, elastin (ELN), and hyaluronan (HA) was created. The electrochemically aligned collagen and ELN mimic the composition of the dermal matrix, while HA is incorporated into the matrices through adsorption and chemical immobilization. The resulting collagen/ELN/hyaluronic acid scaffold (CEH) recapitulates the compositional features of the native skin ECM and supports the proliferation, differentiation, and regeneration of skin cells.

MACROMOLECULAR BIOSCIENCE (2023)

Article Cell & Tissue Engineering

The regulatory challenge of 3D bioprinting

Tajanka Mladenovska, Peter F. Choong, Gordon G. Wallace, Cathal D. O'Connell

Summary: New developments in additive manufacturing and regenerative medicine have the potential to disrupt traditional therapy development and medical device manufacture. Regulators face challenges in adapting traditional regulatory frameworks for bespoke solutions and incorporating living cells in 3D bioprinting. This perspective discusses the regulatory challenges of 3D bioprinting in comparison to existing cell therapies and custom-made medical devices, including classification, risk, standardization, and quality control.

REGENERATIVE MEDICINE (2023)

Article Cell Biology

Ex Vivo Preservation of Ovine Periosteum Using a Perfusion Bioreactor System

Hai Xin, Sara Romanazzo, Eva Tomaskovic-Crook, Timothy C. Mitchell, Jui Chien Hung, Steven G. Wise, Kai Cheng, D. S. Abdullah Al Maruf, Murray J. Stokan, Timothy G. H. Manzie, Krishnan Parthasarathi, Veronica K. Y. Cheung, Ruta Gupta, Mark Ly, Carlo Pulitano, Innes K. Wise, Jeremy M. Crook, Jonathan R. Clark

Summary: We have developed an ex vivo perfusion bioreactor system to preserve surgically resected periosteal flaps, demonstrating long-term cell viability and metabolism. This proof-of-concept study paves the way for innovative bone engineering approaches using autotransplanted periosteum to enhance in vivo bone repair.

CELLS (2023)

Review Polymer Science

From Free Tissue Transfer to Hydrogels: A Brief Review of the Application of the Periosteum in Bone Regeneration

Hai Xin, Eva Tomaskovic-Crook, D. S. Abdullah Al Maruf, Kai Cheng, James Wykes, Timothy G. H. Manzie, Steven G. Wise, Jeremy M. Crook, Jonathan R. Clark

Summary: This article provides an overview of the research on the use of periosteum for bone repair, including the anatomy and function of periosteum, culture of periosteal progenitor cells, periosteum-induced ossification, periosteum engineering, and scaffold vascularization.
Article Biotechnology & Applied Microbiology

A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor

D. S. Abdullah Al Maruf, Kai Cheng, Hai Xin, Veronica K. Y. Cheung, Matthew Foley, Innes K. Wise, Will Lewin, Catriona Froggatt, James Wykes, Krishnan Parthasarathi, David Leinkram, Dale Howes, Natalka Suchowerska, David R. Mckenzie, Ruta Gupta, Jeremy M. Crook, Jonathan R. Clark

Summary: Autologous bone replacement is the preferred treatment for mandibular defects, but limitations exist. Bone tissue engineering could overcome these limitations. This study compares various bone substitutes with autologous bone, aiming to select a suitable option for future mandibular repair studies.

BIOENGINEERING-BASEL (2023)

Article Biophysics

Functional surfaces for exosomes capturing and exosomal microRNAs analysis

Cristina Potrich, Anna Pedrotti, Cecilia Pederzolli, Lorenzo Lunelli

Summary: This study developed different functional surfaces for capturing exosomes and verified their effectiveness through experiments. Among them, the negatively-charged surface performed the best, capturing a large number of exosomes and successfully analyzing their biomarkers.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer

Brojendra Nath Saren, Srushti Mahajan, Mayur Aalhate, Rahul Kumar, Essha Chatterjee, Indrani Maji, Ujala Gupta, Santosh Kumar Guru, Pankaj Kumar Singh

Summary: This study developed P-selectin-targeted dasatinib nanoparticles coated with chitosan and fucoidan (DST-CH-FUC-NPs), which showed sustained release, reduced hemolytic potential, increased cytotoxicity and cellular uptake compared to free dasatinib. These nanoparticles also demonstrated enhanced ROS production, mitochondrial membrane potential damage, apoptosis induction, cell migration inhibition, and disruption of lysosomal membrane integrity.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Graphene oxide-doped chiral dextro-hydrogel promotes peripheral nerve repair through M2 polarization of macrophages

Weiping Deng, Xiaohui Li, Ya Li, Zhongbing Huang, Yulin Wang, Ning Mu, Juan Wang, Tunan Chen, Ximing Pu, Guangfu Yin, Hua Feng

Summary: This study demonstrates the importance of chirality in nerve repair by constructing a GO-phenylalanine derivative hydrogel system. In vivo experiments show that the dextro group significantly improves functional recovery and histological restoration in rat sciatic nerve repair models. The doped GO promotes angiogenesis and myelination. These results suggest that chirality plays a crucial role in promoting nerve regeneration.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Analysis of surfactant production by Bacillus cereus GX7 and optimization of fermentation conditions

Xiaoyan Wang, Jin Gao, Yu Gao, Linlin Zhang, Congchao Xu, Qintong Li, Lin Li, Jianliang Xue

Summary: In this study, a highly effective surfactant producer strain, Bacillus Cereus GX7, was isolated from the oil tank bottom sludge of Shengli Oil Field in China. The biosurfactant produced by GX7 was identified as surfactin, a lipopeptide surfactant, through TLC, FT-IR, and LC-MS/MS analysis. The fermentation process of GX7 was optimized using single-factor experiments, focusing on the composition of fermentation medium and fermentation conditions. Glucose and peptone were found to be the best carbon and nitrogen sources, and the optimum temperature, inoculum amount, pH, rotation speed, and fermentation time for the strain were determined to be 30°C, 1%, 7.5, 150 rpm, and 48 h, respectively. After optimization, the surface tension and emulsification index of the fermentation broth were 26.84 mN/m and 57.84%, respectively. Furthermore, the biosurfactant produced by GX7 demonstrated good stability over a wide range of temperature, pH, and salt concentration.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A 3D physical model predicting favorable bacteria adhesion

Rodney Marcelo do Nascimento, Christine Grauby-Heywang, Houssem Kahli, Nesrine Debez, Laure Beven, Ivan Helmuth Bechtold, Touria Cohen Bouhacina

Summary: This article presents a theoretical model based on thermodynamic rules to assess the early stages of bacterial biofilm formation on different material surfaces. By utilizing morphological characteristics of bacteria and Atomic Force Microscopy images, the model generates a dataset of energetically minimized states, which can be correlated with bacterial adhesion states.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy

Filipa A. L. S. Silva, Licinia Timochenco, Raquel Costa-Almeida, Jose Ramiro Fernandes, Susana G. Santos, Fernao D. Magalhaes, Artur M. Pinto

Summary: The study demonstrates that by photoreducing nanosized graphene oxide using ultraviolet radiation, nanometric particles with high light-to-heat conversion efficiency and water stability can be obtained. These nanomaterials exhibit high absorption in the near-infrared region and show no cytotoxicity towards human cells, indicating their potential for safe therapy.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Impact of the physical properties of contact lens materials on the discomfort: role of the coefficient of friction

D. Costa, V. De Matteis, F. Treso, G. Montani, M. Martino, R. Rinaldi, M. Corrado, M. Cascione

Summary: This review primarily discusses the relationship between contact lens discomfort (CLD) and the surface properties of contact lenses (CLs), specifically the coefficient of friction (CoF). The review emphasizes the importance of introducing a standardized protocol for measuring CoF and calls for a more precise evaluation of the relationship between surface properties and comfort in CLs users.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Structural rearrangement of elastin under oxidative stress

Debdip Brahma, Tamal Sarkar, Rupal Kaushik, Akshay Narayan Sarangi, Amar Nath Gupta

Summary: This in-vitro study evaluates the effect of reactive oxygen species (ROS) on the structural rearrangement of elastin. The results show that oxidative stress leads to a decrease in protein size and changes in secondary structure, potentially promoting protein aggregation. This study is important for therapeutics aiming to prevent elastin degradation and aging.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A dual-functional strontium-decorated titanium implants that guides the immune response for osseointegration of osteoporotic rats

Xin Yang, Qiang Wang, Chaoxi Yan, Degang Huang, Yinchang Zhang, Huazheng He, Shouliang Xiong, Congming Li, Pingbo Chen, Tingjun Ye, Dan Hu, Lei Wang

Summary: This study presents a practical and effective strategy to improve osseointegration in patients with osteoporosis. By coating titanium implants with polydopamine followed by strontium modification, the bi-functional implants promote bone regeneration and immune regulation. The results show good biocompatibility, sustained release of strontium ions, and stable osseointegration between bone tissues and implants.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Colloidal crystals array enabled bionic biliary stent for efficient domestic biofluid management

Sengwang Fu, Jianping Zhu, Zhijun Jiang, Yue Cao, Yufei Chen, Lihao Zhang, Sunlong Li, Weipeng Lu, Chengbin Miao, Qing He, Qi Li, Weixing Zhang, Lehao Ren, Yachun Li, Hongchao Shi, Cihui Liu

Summary: Effective management of biofluids is crucial for in vivo surgical interventions. Recent advances include self-sealing needles, drug-eluting stents, and shear-thinning hydrogels. However, complications associated with intestinal mucosal injury and secondary damage still persist. In this study, researchers developed an interpenetrating Janus wettability stent coating that enables unidirectional draining of excessive biofluid. They also demonstrated directional biofluid movement using a self-pumping dressing with potential applications in biofluid collection and disease diagnosis through metal ion detection. This integrated system presents an opportunity for designing wound dressings with effective biofluid management and metal ion detection capabilities.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Biomaterials coated with zwitterionic polymer brush demonstrated significant resistance to bacterial adhesion and biofilm formation in comparison to brush coatings incorporated with antibiotics

Maryam Hassani, Mojtaba Kamankesh, Mazda Rad-Malekshahi, Kobra Rostamizadeh, Farhad Rezaee, Ismaeil Haririan, Seyed Mojtaba Daghighi

Summary: Bacterial adhesion and biofilm formation on the surface of biomaterial implants is a critical problem, and a polymer brush coating with antiadhesive and antimicrobial properties has proven to be highly effective in resolving this issue.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Croconaine conjugated cationic polymeric nanoparticles for NIR enhanced bacterial killing

Huaihong Zhang, Na Liu, Yuting Zhang, Hui Cang, Zhaosheng Cai, Ziqun Huang, Jun Li

Summary: A functionalized cationic polymer, CR-PQAC, was designed and synthesized for photothermal enhanced antimicrobial therapy. The CR-PQAC nanoparticles exhibited significant antibacterial activity and low cytotoxicity against mammalian cells.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology

Ipsita Sahu, Priyadarshi Chakraborty

Summary: Peptide nanotechnology bridges the gap between materials and biological worlds by utilizing self-assembly of short-peptide building blocks. Hydrogels engineered from these short peptides show great potential in biomedical applications, but their weak mechanical properties and limited functional diversity need to be addressed. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can enhance their mechanical properties and expand their functional diversity.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Conductive 3D Ti3C2Tx MXene-Matrigel hydrogels promote proliferation and neuronal differentiation of neural stem cells

Hao Wei, Yajun Gu, Ao Li, Panpan Song, Dingding Liu, Feihu Sun, Xiaofeng Ma, Xiaoyun Qian

Summary: In this study, a stable three-dimensional conductive hydrogel was prepared by cross-linking MXenes to Matrigel hydrogel. The conductive hydrogel promotes the proliferation and differentiation of NSCs, providing new strategies for neural tissue engineering.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Effect of the oxygenic groups on activated carbon on its hemocompatibility

Yue Zhong, Xiaoli Ge, Juan Zhang, Qun Wei, Feng Wang, Yongke Zhong

Summary: The effect of oxygenic groups on the hemocompatibility of activated carbon was studied through liquid-phase oxidation and subsequent heat treatment. Results showed that the presence of oxygenic groups improved hemocompatibility, while their removal decreased it.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)