4.7 Article

Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation

Journal

CHEMOSPHERE
Volume 232, Issue -, Pages 377-386

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.05.060

Keywords

Fenton-like; Soil remediation; Petroleum hydrocarbons; EDTA; Oxidation

Ask authors/readers for more resources

Experimental tests were carried out in solid phase reactors on a microcosm scale, to removal old petroleum pollution by Fenton like oxidation process. In order to optimize the process, parametric study and statistically designed experiment have been undertaken by considering the amount influence of hydrogen peroxide (H2O2), endogenous and zero-valent iron (Fe) and ethylene diamine tetraacetic acid (EDTA) as chelating agent. The measurement of residual total petroleum hydrocarbons for different H2O2/Fe molar ratios and pH in the vicinity of neutrality highlighted oxidation rates ranging between 29.0 and 39.3%. The Fenton like (FL) oxidation was optimal for H2O2/Fe molar ratio of 15/4. The use EDTA led to result up 72.2% for H2O2/total Fe/EDTA molar ratio of 15/4/4 after 48 h of treatment. The statistical analysis of data by factorial design, has allowed the modeling of Fenton like process performances in the operating domain. It showed that hydrogen peroxide amount, interaction effects of oxidant-catalyst, catalyst-chelating agent, and oxidant-catalyst-chelating agent, were the influential parameters. Moreover, these results suggest that endogenous iron could be used as a source of iron in the presence of the chelating agent to activate FL oxidation. A better accuracy (80.0%) was obtained by statistical analysis for H2O2/endogenous Fe/EDTA molar ratio of 20/1/1. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available