4.3 Review

Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry

Journal

CELL CALCIUM
Volume 79, Issue -, Pages 35-43

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2019.02.002

Keywords

Store-operated calcium entry; CRAC channel; STIM; Orai; Stoichiometry; Concatemer

Categories

Funding

  1. National Institutes of Health [R37 GM45347]
  2. Mathers Charitable Foundation
  3. National Science Foundation Graduate Research Fellowship Program
  4. National Institutes of Health training grant [5T32AI007290]

Ask authors/readers for more resources

Substantial progress has been made in the past several years in establishing the stoichiometries of STIM and Orai proteins and understanding their influence on store-operated calcium entry. Depletion of ER Ca2+ triggers STIM1 to accumulate at ER-plasma membrane junctions where it binds and opens Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 is a dimer, and release of Ca2+ from its two luminal domains is reported to promote their association as well as drive formation of higher-order STIM1 oligomers. The CRAC channel, originally thought to be tetrameric, is now considered to be a hexamer of Orai1 subunits based on crystallographic and electrophysiological studies. STIM1 binding activates CRAC channels in a highly nonlinear way, such that all six Orai1 binding sites must be occupied to account for the activation and signature properties of native channels. The structural basis of STIM1 engagement with the channel is currently unclear, with evidence suggesting that STIM1 dimers bind to individual or pairs of Orai1 subunits. This review examines evidence that has led to points of consensus and debate about STIM1 and Orai1 stoichiometries, and explains the importance of STIM-Orai complex stoichiometry for the regulation of store-operated calcium entry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available