4.7 Article

Small molecule inhibition of microRNA-21 expression reduces cell viability and microtumor formation

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 27, Issue 16, Pages 3735-3743

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2019.05.044

Keywords

-

Funding

  1. American Cancer Society [120130-RSG-11-066-01-RMC]
  2. Andrew Mellon Predoctoral Fellowship

Ask authors/readers for more resources

MicroRNAs (miRNAs) are short, non-coding RNA molecules estimated to regulate expression of a large number of protein-coding genes and are implicated in a variety of biological processes such as development, differentiation, proliferation, and cell survival. Dysregulation of miRNAs has been attributed to the onset and progression of various human diseases, including cancer. MicroRNA-21 (miR-21), one of the most established oncogenic miRNAs, is found to be upregulated in a wide range of cancers making it an attractive therapeutic target. Employment of a luciferase-based live-cell reporter assay in a high-throughput screen of > 300,000 small molecules led to the discovery of a new class of ether-amide miR-21 inhibitors. Following a structure-activity relationship study, an optimized lead molecule was found to inhibit miR-21 transcription. Furthermore, the inhibitor demonstrated cytotoxicity in a cervical cancer cell line via induction of apoptosis and was capable of reducing microtumor formation in a long-term clonogenic assay. Altogether, this work reports the discovery of a new small molecule inhibitor of miR-21 and demonstrates its potential as an alternative approach in cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available