4.5 Article

The effects of protective footwear on spine control and lifting mechanics

Journal

APPLIED ERGONOMICS
Volume 76, Issue -, Pages 122-129

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apergo.2018.12.009

Keywords

Kinematics; Footwear; Local dynamic stability

Funding

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2014-05560]

Ask authors/readers for more resources

Manual materials handling is often performed in hazardous environments where protective footwear must be worn; however, workers can wear different types of footwear depending on the hazards present. Therefore, the goal of this study was to investigate how three-dimensional lifting mechanics and trunk local dynamic stability are affected by different types of protective footwear (i.e. steel-toed shoes (unlaced boot), steel-toed boots (work boot), and steel-toed boots with a metatarsal guard (MET)). Twelve males and twelve females performed a repetitive lifting task at 10% of their maximum lifting effort, under three randomized footwear conditions. Footwear type influenced ankle range of motion (ROM). The work boot condition reduced ankle sagittal ROM (p = 0.007) and the MET condition reduced ankle ROM in the sagittal (p = 0.004), frontal (p = 0.001) and transverse (p = 0.003) planes. Despite these differences at the ankle, no other changes in participant lifting mechanics were observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available