4.8 Article

Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation

Journal

APPLIED ENERGY
Volume 239, Issue -, Pages 957-968

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.01.250

Keywords

Adiabatic compressed air energy storage; Variable configuration; Operating mode; Wind power

Funding

  1. National Natural Science Foundation of China [51676181]
  2. National Basic Research Program of China (973 Program) [2015CB251300]
  3. Beijing Science and Technology Plan [D161100004616001]
  4. Frontier Science Research Project of CAS [QYZDB-SSW-JSC023]

Ask authors/readers for more resources

Wind speed varies randomly over a wide range, causing the output wind power to fluctuate in large amplitude. An adiabatic compressed air energy storage (A-CAES) system with variable configuration (VC-ACAES) is proposed to cope with the significant power fluctuations of wind farm. It broadens the operational range of A-CAES system by allowing multistage compressor and multistage expander to operate under variable modes. Off-design modelling of the VC-ACAES system is constructed. Based on the characteristics of a real wind farm rated at 49.5 MW in China, a matching VC-ACAES system is designed. With variable configuration, it is possible to increase operational ranges of compressor and expander of the proposed system by 70.85% and 27.27% respectively. VC-ACAES system performance when integrated with wind plant is investigated and analysed. Results indicate that after integration with the VC-ACAES system, wind power (average: 21.05 MW) with fluctuations up to 49.5 MW can be stabilized to a steady electric power of 18.64 MW, and wind power utilization coefficient is increased from 26.29% to 71.02%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Experimental investigation of the sloshing influence on FLNG liquefaction system

Xueyu Chang, Yuxing Li, Jianlu Zhu, Xuehui Zhang, Wen Li, Chao Wang, Haisheng Chen, Jie Chen, Weiping Zeng

Summary: This study analyzes the effects of three different sloshing forms on the liquefaction performance and equipment of DMR system through sloshing experiments. The results show that sloshing reduces liquefaction performance, increases power consumption, and has adverse effects on fluid distribution and heat transfer in the heat exchanger.

ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS (2023)

Article Nuclear Science & Technology

Comparisons of Supercritical Loop Flow and Heat Transfer Behavior Under Uniform and Nonuniform High-Flux Heat Inputs

Dong Yang, Lin Chen, Yongchang Feng, Haisheng Chen

Summary: This paper investigates the heat transfer mechanism of supercritical water during the transition process from subcritical to supercritical states. The results reveal that the difference in thermophysical properties between the boundary layer and the core region is the main reason for the heat transfer behavior, and the flow structure on the buffer layer is a dominating factor for heat transfer deterioration.

NUCLEAR SCIENCE AND ENGINEERING (2023)

Article Thermodynamics

Parametric optimisation and thermo-economic analysis of Joule-Brayton cycle-based pumped thermal electricity storage system under various charging-discharging periods

Han Zhang, Liang Wang, Xipeng Lin, Haisheng Chen

Summary: The Joule-Brayton cycle-based pumped thermal electricity storage (PTES) system has a simple structure, high energy density, and geographical independence, which has broad application prospects. This study conducted multi-dimensional optimization and detailed analysis of loss and thermo-economic performance for PTES systems with various charging/discharging durations. The results showed that longer charging/discharging duration enhances the economic performance and the optimal dimensions of the cold and hot reservoirs are different.

ENERGY (2023)

Article Thermodynamics

Molecular Dynamics Study of CO2 Phase Change Transport in the Near-Critical Region: Model Parameter Optimization

Zi-Yu Liu, Lin Chen, Haisheng Chen

Summary: This study focused on the optimization of the CO2 potential model for molecular dynamics simulation in the supercritical region. The results showed that the optimized model provided accurate descriptions of CO2 properties and heat transfer in the supercritical state.

HEAT TRANSFER ENGINEERING (2023)

Article Energy & Fuels

Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)

Liang Wang, Xipeng Lin, Han Zhang, Long Peng, Haoshu Ling, Shuang Zhang, Haisheng Chen

Summary: A novel pumped thermal-liquid air energy storage (PTLAES) system is proposed in this paper, which converts electricity to heat and liquid air and re-converts them to electricity when needed. With a high energy storage density and no requirement for low-density cold storage devices, the PTLAES system shows round-trip efficiencies in the range of 58.7% to 63.8% and an energy storage density of 107.6 kWh/m3 when using basalt as the thermal energy storage material.

APPLIED ENERGY (2023)

Article Thermodynamics

Experimental study on the storage performance of the innovative spray-type packed bed thermal energy storage

Lin Lin, Liang Wang, Yakai Bai, Xipeng Lin, Shuang Zhang, Zhiwei Ge, Long Peng, Haisheng Chen

Summary: Thermal energy storage (TES) is an effective solution to the temporal mismatch between energy generation and users' requirements. The spray-type packed bed TES technology, with its high efficiency and low cost, shows promising development prospects. Experimental results indicate that the charging temperature and flow rate have minimal impact on the heat storage performance, and higher charging temperature and lower flow rate result in a more uniform temperature distribution.

APPLIED THERMAL ENGINEERING (2023)

Article Energy & Fuels

Syngas production from CO2 reforming of glycerol by mesoporous Ni/CeO2 catalysts

Ruijia Ren, Binlin Dou, Hua Zhang, Kai Wu, Yadong Wang, Haisheng Chen, Yujie Xu

Summary: In this study, a mesoporous Ni/CeO2 catalyst with high specific surface area was prepared and used for glycerol dry reforming. Thermodynamic analysis was conducted to minimize Gibbs's free energy. The characterization results showed that a higher Ni content resulted in weaker interaction between Ni and the CeO2 support. The 5Ni/CeO2 catalyst exhibited the best catalytic activity and glycerol conversion reached 84.1% at 750 degrees C. The catalysts also showed excellent stability during the 10-hour catalytic process. The activation energy of the Ni-based catalyst for glycerol dry reforming was calculated using a kinetic model assuming a power law as a first-order reaction.
Article Thermodynamics

Numerical investigation on cooling performance of multilayer pyramid thermoelectric module

Chunyang Wang, Xiao Yang, Yanan Shen, Ting Zhang, Xinghua Zheng, Haisheng Chen

Summary: A three-dimensional numerical study was conducted to investigate the cooling performance of a thermoelectric module with multilayer pyramid thermoelectric legs. Two physical models, rectangular shaped and multilayer pyramid thermoelectric cooling modules, were compared. The study focused on the effect of leg height, side ratio, and the number of leg layers on the cooling performance. The results showed that the multilayer pyramid module had better cooling performance than the rectangular shaped module, with a maximum reduction of 11.25 K in the minimum averaged temperature of the cold surface. However, the cooling performance of the multilayer pyramid module was not very good when the values of side ratio and the number of leg layers were low. A recommended map for evaluating the cooling performance was presented based on the side ratio, the number of leg layers, and the heights of thermoelectric legs.

INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER (2023)

Article Materials Science, Composites

Beam element method for mechanical analysis of 2.5D woven composite: Modeling strategy and finite element method simulation

Chang Liu, Hualiang Zhang, Haisheng Chen, Yujie Xu, Yangli Zhu

Summary: This work presents a beam element approach for the modeling and high-efficiency simulation of mechanical properties of 2.5D woven composite. A technical scheme for the parametric modeling of 2.5D woven fabrics was proposed, and a method for creating matrix beam elements was also developed. The mechanical properties of the 2.5D woven composite were then simulated using a beam element solver.

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES (2023)

Article Thermodynamics

Performance in the Discharge Process of a Novel Zeolite-Water Adsorption Thermal Energy Storage System

Xiuyan Yue, Yujie Xu, Xuezhi Zhou, Xinjing Zhang, Youqiang Linghu, Xiang Wang, Haisheng Chen

Summary: A novel combined cooling and heating storage system based on zeolite-water is proposed to effectively recover low and medium grade heat energy. The system combines zeolite-water adsorption process with water evaporation refrigeration process to generate cold energy and heat energy simultaneously. The study reveals the change laws of system performances during the discharging process, such as energy generated, energy conversion coefficient, and energy density. This research provides a way for efficient utilization of low and medium grade heat energy.

JOURNAL OF THERMAL SCIENCE (2023)

Review Materials Science, Multidisciplinary

Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles

Yanan Shen, Xue Han, Pengyu Zhang, Xinyi Chen, Xiao Yang, Ding Liu, Xiaona Yang, Xinghua Zheng, Haisheng Chen, Kun Zhang, Ting Zhang

Summary: With the development of IoT technology, wearable electronics have brought significant changes to our lives. The demand for low power consumption and mini-type power systems for wearable electronics is more urgent than ever. Thermoelectric materials are ideal candidates for wearable power systems as they can efficiently convert temperature difference into electrical energy without mechanical components. This review comprehensively introduces the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles, summarizing strategies for enhancing thermoelectric performance, processing techniques for fiber devices, and applications of thermoelectric textiles. Additionally, challenges and future prospects in the field are discussed.

ADVANCED FIBER MATERIALS (2023)

Article Energy & Fuels

Genetic optimization design for aerodynamic structure of oblique flow compressor radial inlet chamber in compressed air energy storage system

Jixiang Chen, Zhitao Zuo, Xin Zhou, Wenbin Guo, Jianting Sun, Haisheng Chen

Summary: This article presents a multiobjective optimization design method for the radial inlet chamber (RIC) of the oblique flow compressor in CAES system. After optimization, the RIC area is expanded, the transition of the meridian profile is smoother, and both the distortion coefficient and total pressure loss coefficient are reduced. By using the optimized RIC, the performance of the oblique flow compressor has been improved.

ENERGY STORAGE (2023)

Article Energy & Fuels

Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?

Han Zhang, Liang Wang, Xipeng Lin, Haisheng Chen

Summary: This study innovatively proposes two operation modes for compressors and expanders operating at a constant rotational speed (CRS) and compares their performances with the traditional constant compression ratio (CCR) operation mode. The results show that the proposed CRS operation mode significantly improves the system storage performance. This research provides a theoretical basis for formulating appropriate system control schemes and further optimizing operational control strategies.

APPLIED ENERGY (2023)

Article Chemistry, Multidisciplinary

Development of Adjustable High- to Low-Adhesive Superhydrophobicity Using Aligned Electrospun Fibers

Yi Zhang, Yifu Li, Zhongchao Tan

Summary: Superhydrophobic surfaces based on electrospun fibrous structures offer advantages in additive manufacturing and gas passage. By studying droplet wetting behavior on directionally aligned fibers, this article achieves superhydrophobicity with adjustable adhesion.

LANGMUIR (2023)

Article Chemistry, Multidisciplinary

Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system

Yuanyuan Jing, Jun Luo, Xue Han, Jiawei Yang, Qiulin Liu, Yuanyuan Zheng, Xinyi Chen, Fuli Huang, Jiawen Chen, Qinliang Zhuang, Yanan Shen, Haisheng Chen, Huaizhou Zhao, G. Jeffrey Snyder, Guodong Li, Ting Zhang, Kun Zhang

Summary: Researchers have developed a large-area, durable, washable, and skin-conformable wearable thermoelectric textile that can rapidly and stably cool the body surface and be powered by solar energy, reducing energy consumption.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Energy & Fuels

Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting

Shitong Fang, Houfan Du, Tao Yan, Keyu Chen, Zhiyuan Li, Xiaoqing Ma, Zhihui Lai, Shengxi Zhou

Summary: This paper proposes a new type of nonlinear VIV energy harvester (ANVEH) that compensates for the decrease in peak energy output at low wind speeds by introducing an auxiliary structure. Theoretical and experimental results show that ANVEH performs better than traditional nonlinear VIV energy harvesters under various system parameter variations.

APPLIED ENERGY (2024)

Article Energy & Fuels

Evaluation method for the availability of solar energy resources in road areas before route corridor planning

Wei Jiang, Shuo Zhang, Teng Wang, Yufei Zhang, Aimin Sha, Jingjing Xiao, Dongdong Yuan

Summary: A standardized method was developed to evaluate the availability of solar energy resources in road areas, which combined the Analytic Hierarchy Process (AHP) and the Geographic Information System (GIS). By analyzing critical factors and using a multi-indicator evaluation method, the method accurately evaluated the utilization of solar energy resources and guided the optimal location selection for road photovoltaic (PV) projects. The results provided guidance for the application of road PV projects and site selection for route corridors worldwide, promoting the integration of transportation and energy.

APPLIED ENERGY (2024)

Article Energy & Fuels

Impacts of PTL coating gaps on cell performance for PEM water electrolyzer

Chang Liu, Jacob A. Wrubel, Elliot Padgett, Guido Bender

Summary: The study investigates the effects of coating defects on the performance of the anode porous transport layer (PTL) in water electrolyzers. The results show that an increasing fraction of uncoated regions on the PTL leads to decreased cell performance, with continuous uncoated regions having a more severe impact compared to multiple thin uncoated strips.

APPLIED ENERGY (2024)

Article Energy & Fuels

Coordinated pricing mechanism for parking clusters considering interval-guided uncertainty-aware strategies

Marcos Tostado-Veliz, Xiaolong Jin, Rohit Bhakar, Francisco Jurado

Summary: In this paper, a coordinated charging price mechanism for clusters of parking lots is proposed. The research shows that enabling vehicle-to-grid characteristics can bring significant economic benefits for users and the cluster coordinator, and vehicle-to-grid impacts noticeably on the risk-averse character of the uncertainty-aware strategies. The developed pricing mechanism can reduce the cost for users, avoiding to directly translate the energy cost to charging points.

APPLIED ENERGY (2024)

Article Energy & Fuels

The establishment of evaluation systems and an index for energy superpower

Duan Kang

Summary: Building an energy superpower is a key strategy for China and a long-term goal for other countries. This study proposes an evaluation system and index for measuring energy superpower, and finds that China has significantly improved its ranking over the past 21 years, surpassing other countries.

APPLIED ENERGY (2024)

Article Energy & Fuels

A model-based study of the evolution of gravel layer permeability under the synergistic blockage effect of sand particle transport and secondary hydrate formation

Fucheng Deng, Yifei Wang, Xiaosen Li, Gang Li, Yi Wang, Bin Huang

Summary: This study investigated the synergistic blockage mechanism of sand and hydrate in gravel filling layer and the evolution of permeability in the layer. Experimental models and modified permeability models were established to analyze the effects of sand particles and hydrate formation on permeability. The study provided valuable insights for the safe and efficient exploitation of hydrate reservoirs.

APPLIED ENERGY (2024)

Article Energy & Fuels

Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach

Hao Wang, Xiwen Chen, Natan Vital, Edward Duffy, Abolfazl Razi

Summary: This study proposes a HVAC energy optimization model based on deep reinforcement learning algorithm. It achieves 37% energy savings and ensures thermal comfort for open office buildings. The model has a low complexity, uses a few controllable factors, and has a short training time with good generalizability.

APPLIED ENERGY (2024)

Article Energy & Fuels

Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects

Moyue Cong, Yongzhuo Gao, Weidong Wang, Long He, Xiwang Mao, Yi Long, Wei Dong

Summary: This study introduces a multi-strategy ultra-wideband energy harvesting device that achieves high power output without the need for external power input. By utilizing asymmetry, stagger array, magnetic coupling, and nonlinearity strategies, the device maintains a stable output voltage and high power density output at non-resonant frequencies. Temperature and humidity monitoring are performed using Bluetooth sensors to adaptively assess the device.

APPLIED ENERGY (2024)

Article Energy & Fuels

Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform

Tianshu Dong, Xiudong Duan, Yuanyuan Huang, Danji Huang, Yingdong Luo, Ziyu Liu, Xiaomeng Ai, Jiakun Fang, Chaolong Song

Summary: Electrochemical water splitting is crucial for hydrogen production, and improving the hydrogen separation rate from the electrode is essential for enhancing water electrolyzer performance. However, issues such as air bubble adhesion to the electrode plate hinder the process. Therefore, a methodology to investigate the two-phase flow within the electrolyzer is in high demand. This study proposes using a microfluidic system as a simulator for the electrolyzer and optimizing the two-phase flow by manipulating the micro-structure of the flow.

APPLIED ENERGY (2024)

Article Energy & Fuels

A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system

Shuo Han, Yifan Yuan, Mengjiao He, Ziwen Zhao, Beibei Xu, Diyi Chen, Jakub Jurasz

Summary: Giving full play to the flexibility of hydropower and integrating more variable renewable energy is of great significance for accelerating the transformation of China's power energy system. This study proposes a novel day-ahead scheduling model that considers the flexibility limited by irregular vibration zones (VZs) and the probability of flexibility shortage in a hydropower-variable renewable energy hybrid generation system. The model is applied to a real hydropower station and effectively improves the flexibility supply capacity of hydropower, especially during heavy load demand in flood season.

APPLIED ENERGY (2024)

Article Energy & Fuels

Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting

Zhen Wang, Kangqi Fan, Shizhong Zhao, Shuxin Wu, Xuan Zhang, Kangjia Zhai, Zhiqi Li, Hua He

Summary: This study developed a high-performance rotary energy harvester (AI-REH) inspired by archery, which efficiently accumulates and releases ultralow-frequency vibration energy. By utilizing a magnetic coupling strategy and an accumulator spring, the AI-REH achieves significantly accelerated rotor speeds and enhanced electric outputs.

APPLIED ENERGY (2024)

Article Energy & Fuels

A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy

Yi Yang, Qianyi Xing, Kang Wang, Caihong Li, Jianzhou Wang, Xiaojia Huang

Summary: In this study, a novel hybrid Quantile Regression (QR) model is proposed for Probabilistic Load Forecasting (PLF). The model integrates causal dilated convolution, residual connection, and Bidirectional Long Short-Term Memory (BiLSTM) for multi-scale feature extraction. In addition, a Combined Probabilistic Load Forecasting System (CPLFS) is proposed to overcome the inherent flaws of relying on a single model. Simulation results show that the hybrid QR outperforms traditional models and CPLFS exceeds the best benchmarks in terms of prediction accuracy and stability.

APPLIED ENERGY (2024)

Article Energy & Fuels

Capacity fade prediction for vanadium redox flow batteries during long-term operations

Wen-Jiang Zou, Young-Bae Kim, Seunghun Jung

Summary: This paper proposes a dynamic prediction model for capacity fade in vanadium redox flow batteries (VRFBs). The model accurately predicts changes in electrolyte volume and capacity fade, enhancing the competitiveness of VRFBs in energy storage applications.

APPLIED ENERGY (2024)

Article Energy & Fuels

State-of-charge balancing strategy of battery energy storage units with a voltage balance function for a Bipolar DC mircrogrid

Yuechao Ma, Shengtie Wang, Guangchen Liu, Guizhen Tian, Jianwei Zhang, Ruiming Liu

Summary: This paper focuses on the balance of state of charge (SOC) among multiple battery energy storage units (MBESUs) and bus voltage balance in an islanded bipolar DC microgrid. A SOC automatic balancing strategy is proposed considering the energy flow relationship and utilizing the adaptive virtual resistance algorithm. The simulation results demonstrate the effectiveness of the proposed strategy in achieving SOC balancing and decreasing bus voltage unbalance.

APPLIED ENERGY (2024)

Article Energy & Fuels

Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings

Raad Z. Homod, Basil Sh. Munahi, Hayder Ibrahim Mohammed, Musatafa Abbas Abbood Albadr, Aissa Abderrahmane, Jasim M. Mahdi, Mohamed Bechir Ben Hamida, Bilal Naji Alhasnawi, A. S. Albahri, Hussein Togun, Umar F. Alqsair, Zaher Mundher Yaseen

Summary: In this study, the control problem of the multiple-boiler system (MBS) is formulated as a dynamic Markov decision process and a deep clustering reinforcement learning approach is applied to obtain the optimal control policy. The proposed strategy, based on bang-bang action, shows superior response and achieves more than 32% energy saving compared to conventional fixed parameter controllers under dynamic indoor/outdoor actual conditions.

APPLIED ENERGY (2024)