4.7 Article

Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment

Journal

PLOS PATHOGENS
Volume 15, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1007470

Keywords

-

Funding

  1. NIH [UO1AI115648, RO1AI051584, D43TW007391, R21AI1011456]
  2. Ambrose-Monell Foundation
  3. Bill and Melinda Gates Foundation

Ask authors/readers for more resources

Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes. Author summary Tsetse flies transmit pathogenic African trypanosomes, which are the causative agents of socio-economically devastating human and animal African trypanosomiases. These diseases are currently controlled in large part by reducing the population size of tsetse vectors through the use of insecticides, traps and sterile insect technique. However, logistic and monetary hurdles often preclude the prolonged application of procedures necessary to maintain these control programs. Thus, novel strategies, including those aimed at sustainably reducing the ability of tsetse to transmit trypanosomes, are presently under development. Herein we stably colonize tsetse flies with a bacterium (Kosakonia cowanii Zambiae, Kco_Z) that acidifies their midgut, thus rendering the environment inhospitable to infection with two distinct, epidemiologically important trypanosome strains as well as an entomopathogenic bacteria. In addition to inducing a trypanosome refractory phenotype, colonization of tsetse with Kco_Z exerts only a modest fitness cost on the fly. Taken together, these findings suggest that Kco_Z could be applied to enhance the effectiveness of currently employed tsetse control programs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available