4.4 Article

The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model

Journal

INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY
Volume 9, Issue 7, Pages 715-723

Publisher

WILEY
DOI: 10.1002/alr.22320

Keywords

olfactory disorders; olfaction; quality of life

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea - Ministry of Education [2017R1D1A1B04030364]
  2. National Research Foundation of Korea [2017R1D1A1B04030364] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Background Several studies have reported the benefits of olfactory training (OT) in the olfactory nervous system of mouse models. Therefore, in this study we performed next-generation sequencing to evaluate the effects of OT on mRNA sequencing in the olfactory area. Methods Mice in each group were administered 300 mg of 3-methylindole per kilogram of mouse weight. The olfactory function was evaluated by a food-finding test once a week. The olfactory neuroepithelium was harvested for histologic examination and protein analysis. Subsequently, data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and Western blot analysis were conducted. Results Mice were divided into 4 groups according to treatment. Control, anosmia, training, and steroid group mice resumed food finding. Olfactory Maker Protein, olfr1507, ADCY3, and GNAL mRNA expression was higher in the olfactory neuroepithelium of OT than anosmia group mice. In total, 26,364 mRNAs were analyzed. Comparison of the results of OT vs anosmia revealed that ADCY8,10, GFAP, NGF, NGFR, GFAP, and BDNF mRNAs were upregulated in the gene ontology. Conclusion OT improved olfactory function, as indicated by the food-finding test. OT improved the olfactory recovery time to stimulate olfactory nerve regeneration. OT may initially stimulate the olfactory receptor, followed by neurogenesis. Steroid therapy and OT operated under completely different mechanisms in the upregulated gene study. These results indicate that OT may be one of the future modalities for treating olfactory impairment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available