4.6 Article

Biofilm development dynamics and pollutant removal performance of ceramsite made from drinking-water treatment sludge

Journal

WATER ENVIRONMENT RESEARCH
Volume 91, Issue 7, Pages 616-627

Publisher

WILEY
DOI: 10.1002/wer.1089

Keywords

-

Funding

  1. Natural Science Foundation of China [51378300]
  2. National Science Fund for Excellent Young Scholars [51322811]
  3. Program for New Century Excellent Talents in University of the Ministry of Education of China [NCET-12-0341]
  4. Nature Science Foundation of Shandong Province [ZR2016EEB26]

Ask authors/readers for more resources

Alum-sludge ceramsite and denitrifying bacteria (XP-1, XP-2, CL-1, CL-3) were used as substrate and constructed biofilm for enhancing the removal of pollutants from wastewater. The results showed that, due to the large specific surface area, the maximum growth rate was 0.49 mg/(g.day) on the sludge ceramsite, and the mass of biofilm attached onto sludge ceramsite was 5.98 times higher than that when using commercial ceramsite as substrate. Better removal performance could be achieved with the combination of sludge ceramsite and bacteria, viz. 98.6%, 91.0%, and 85.8% reduction in total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD), respectively. Pseudo-first-order kinetics, pseudo-second-order kinetics, Monod kinetics, and multiple Monod kinetics combined with continuous-flow-stirred tank reactor (CFSTR) behavior were used to investigate the dynamics of the pollutant removal processes. The decrease in band brightness for bacteria attached onto sludge ceramsite was 11.5%, while it was more than 35.7% on commercial ceramsite during wastewater treatment according to results from denaturing gradient gel electrophoresis (DGGE). Sludge ceramsite played an important role in maintaining quantities and activities of denitrifying bacteria, and application of sludge ceramsite substrate and denitrifying bacteria was a reliable method to enhance the removals of phosphorus, nitrogen, and COD from domestic wastewater. (C) 2019 Water Environment Federation

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available