4.7 Article

Root microbiome response to treated wastewater irrigation

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 655, Issue -, Pages 899-907

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.11.251

Keywords

Rhizoplane; Rhizosphere; Root microbiome; Treated wastewater; Reclaimed wastewater

Funding

  1. Binational Agricultural Research & Development Fund (BARD) [IS-4662-13]
  2. Israel Ministry of Agriculture and Rural Development [821-0142-13]
  3. USAID-MERC [M34-011]

Ask authors/readers for more resources

With increasing freshwater (FW) scarcity, the use of treatedwastewater (TWW) for crop irrigation is expanding globally. Besides clear benefits, some undesired long-term effects of irrigation with this low quality water on plant performance have been reported. As the rhizosphere microbiome can mediate plant-soil interactions, an examination of the response of these organisms toTWWis necessary to understand the full effects of water quality. In the current study, the effects of irrigation water quality on the microbial community structure of soil and roots as well as edaphic properties and plant performance were evaluated. We compared soil and roots microbiomes of two different plant species (tomato and lettuce), each grown in two distinct soils, and irrigated with either FW or TWW. Irrigation with TWW significantly increase soil pH, EC, K, Na and DOC, and decrease plant fruit and shootweight, relatively to samples irrigatedwith FW. Wecalculated the effect size of plant species, soil type, and irrigation water quality on microbial community structure in soil and root. In the roots, plant species and irrigation water were the dominant factors in shaping both total (DNA based) and active (RNA based) microbial communities, with both factors contributing similarly to the observed microbial population. Soil type and irrigation water were the dominant factors shaping the total microbial community in the soil and were of similar magnitude. Irrigation water quality is demonstrated to be a major force in shaping root-associated microbiome, leading to altered microbial community structure in the critical juncture between plant and soil. (c) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine

Evyatar Ben Mordechay, Jorge Tarchitzky, Yona Chen, Moshe Shenker, Benny Chefetz

ENVIRONMENTAL POLLUTION (2018)

Article Microbiology

Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates

Nesli Tovi, Sammy Frenk, Yitzhak Hadar, Dror Minz

FRONTIERS IN MICROBIOLOGY (2019)

Article Multidisciplinary Sciences

Altering N2O emissions by manipulating wheat root bacterial community

Alla Usyskin-Tonne, Yitzhak Hadar, Dror Minz

SCIENTIFIC REPORTS (2019)

Article Environmental Sciences

Effects of tillage practices on soil microbiome and agricultural parameters

Judith Kraut-Cohen, Avihai Zolti, Liora Shaltiel-Harpaz, Eli Argaman, Rachel Rabinovich, Stefan J. Green, Dror Minz

SCIENCE OF THE TOTAL ENVIRONMENT (2020)

Article Soil Science

Elevated CO2 has a significant impact on denitrifying bacterial community in wheat roots

Alla Usyskin-Tonne, Yitzhak Hadar, Uri Yermiyahu, Dror Minz

SOIL BIOLOGY & BIOCHEMISTRY (2020)

Article Microbiology

The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts

Avihai Zolti, Stefan Joshua Green, Noa Sela, Yitzhak Hadar, Dror Minz

MICROBIOME (2020)

Article Ecology

Elevated CO2 and nitrate levels increase wheat root-associated bacterial abundance and impact rhizosphere microbial community composition and function

Alla Usyskin-Tonne, Yitzhak Hadar, Uri Yermiyahu, Dror Minz

Summary: Elevated CO2 stimulates plant growth and influences root exudates, affecting the microbiome. Interactions between CO2 and nitrate levels have significant effects on root-surface-associated bacterial community structure and function. Changes in bacterial abundance and gene functions may be due to alterations in root exudation patterns at elevated CO2.

ISME JOURNAL (2021)

Article Engineering, Environmental

Pharmaceuticals in edible crops irrigated with reclaimed wastewater: Evidence from a large survey in Israel

Evyatar Ben Mordechay, Vered Mordehay, Jorge Tarchitzky, Benny Chefetz

Summary: The study found that pharmaceuticals and CECs were present in crops irrigated with reclaimed wastewater, with leafy greens showing the highest contamination levels. The contamination levels of different crops varied due to the source of wastewater, quality of treatment, and soil characteristics.

JOURNAL OF HAZARDOUS MATERIALS (2021)

Article Engineering, Environmental

Wastewater-derived organic contaminants in fresh produce: Dietary exposure and human health concerns

Evyatar Ben Mordechay, Tali Sinai, Tamar Berman, Rita Dichtiar, Lital Keinan-Boker, Jorge Tarchitzky, Yehoshua Maor, Vered Mordehay, Orly Manor, Benny Chefetz

Summary: Irrigation with reclaimed wastewater helps conserve freshwater sources, but also exposes agricultural products to emerging contaminants. A study in Israel found that the highest exposure to wastewater-borne contaminants occurred through the consumption of leafy vegetables. While no human health concerns were observed in average and high exposure scenarios, extreme exposure to certain contaminants from produce irrigated with reclaimed wastewater may pose a threat to human health.

WATER RESEARCH (2022)

Article Biotechnology & Applied Microbiology

Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance

Sammy Frenk, Yitzhak Hadar, Dror Minz

APPLIED AND ENVIRONMENTAL MICROBIOLOGY (2018)

Article Environmental Sciences

Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Toshimi Nakajima, Mao Kuragano, Makoto Yamada, Ryo Sugimoto

Summary: This study compared the contribution of submarine groundwater discharge (SGD) to river nutrient budgets at nearshore and embayment scales, and found that SGD-derived nutrients become more important at larger spatial scales.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Impact of NO2 emissions from household heating systems with wall-mounted gas stoves on indoor and ambient air quality in Chinese urban areas

Fan Liu, Lei Zhang, Chongyang Zhang, Ziguang Chen, Jingguang Li

Summary: NO2 emissions from wall-mounted gas stoves used for household heating have become a significant source of indoor pollution in Chinese urban areas. The high indoor concentration of NO2 poses potential health risks to residents. It is urgently necessary to establish relevant regulations and implement emission reduction technologies to reduce NO2 emissions from wall-mounted gas stoves.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Letter Environmental Sciences

Letter to the editor regarding Collard et al. (2023): Persistence and mobility (defined as organic-carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of persistent and mobile substances

Hans Peter H. Arp, Raoul Wolf, Sarah E. Hale, Sivani Baskaran, Juliane Gluege, Martin Scheringer, Xenia Trier, Ian T. Cousins, Harrie Timmer, Roberta Hofman-Caris, Anna Lennquist, Andre D. Bannink, Gerard J. Stroomberg, Rosa M. A. Sjerps, Rosa Montes, Rosario Rodil, Jose Benito Quintana, Daniel Zahn, Herve Gallard, Tobias Mohr, Ivo Schliebner, Michael Neumann

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy

Philomina Onyedikachi Peter, Binessi Edouard Ifon, Francois Nkinahamira, Kayode Hassan Lasisi, Jiangwei Li, Anyi Hu, Chang-Ping Yu

Summary: This study investigates the relationship between dissolved organic matter (DOM) and Rare Earth Elements (REEs) in sediments from Yundang Lagoon, China. The results show four distinct fluorescent components, with protein-like substances being the most prevalent. Additionally, the total fluorescence intensity and LREE concentrations exhibit a synchronized increase from Outer to Inner to Songbai Lake core sediments. The findings demonstrate a strong correlation between DOM content and pollution levels.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity

Surya Gupta, Pasquale Borrelli, Panos Panagos, Christine Alewell

Summary: The objective of this study is to incorporate soil hydraulic properties into the erodibility factor (K) of USLE-type models. By modifying and improving the existing equations for soil texture and permeability, the study successfully included information on saturated hydraulic conductivity (Ksat) into the calculation of K factor. Using the Random Forest machine learning algorithm, two independent K factor maps with different spatial resolutions were generated. The results show that the decrease in K factor values has a positive impact on the modeling of soil erosion rates.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater

Jesmin Akter, Wendy J. M. Smith, Yawen Liu, Ilho Kim, Stuart L. Simpson, Phong Thai, Asja Korajkic, Warish Ahmed

Summary: The choice of workflow in wastewater surveillance has a significant impact on SARS-CoV-2 concentrations, while having minimal effects on HF183 and no effect on HAdV 40/41 concentrations. Certain components in the workflow can be interchangeable, but factors such as buffer type, chloroform, and homogenization speed can affect the recovery of viruses and bacteria.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China

Yu Luo, Xueting Yang, Diwei Wang, Hongmei Xu, Hongai Zhang, Shasha Huang, Qiyuan Wang, Ningning Zhang, Junji Cao, Zhenxing Shen

Summary: Atmospheric PM2.5, which can generate reactive oxygen species (ROS), is associated with cardiorespiratory morbidity and mortality. The study found that both the mass concentration of PM2.5 and the DTT activity were higher during the heating season than during the nonheating season. Combustion sources were the primary contributors to DTT activity during the heating season, while secondary formation dominated during the nonheating season. The study also revealed that biomass burning had the highest inherent oxidation potential among all sources investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy, Leah R. Gerber, Chelsea M. Rochman, Beth Polidoro

Summary: Plastic pollution has devastating consequences for marine organisms. This study uses a trait-based framework to develop a vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i. The index ranks 63 study species based on their vulnerability to macroplastic pollution, providing valuable information for species monitoring and management priorities.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem

Kenji Maurice, Amelia Bourceret, Sami Youssef, Stephane Boivin, Liam Laurent-Webb, Coraline Damasio, Hassan Boukcim, Marc-Andre Selosse, Marc Ducousso

Summary: Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Little is known about microbial community resistance and adaptation to disturbances, hindering our understanding of recovery latency and implications for ecosystem functioning. This study found that anthropic disturbance and natural disturbance have different effects on the topology and stability of soil microbial networks.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation

Yunhao Li, Yali Feng, Haoran Li, Yisong Yao, Chenglong Xu, Jinrong Ju, Ruiyu Ma, Haoyu Wang, Shiwei Jiang

Summary: Deep-sea mining poses a serious threat to marine ecosystems and human health by disturbing sediment and transmitting metal ions through the food chain. This study developed a new regenerative adsorption material, OMN@SA, which effectively removes metal ions. The adsorption mechanism and performance of the material for metal ion fixation were investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts

Antonio Medici, Margherita Lavorgna, Marina Isidori, Chiara Russo, Elena Orlo, Giovanni Luongo, Giovanni Di Fabio, Armando Zarrelli

Summary: Valsartan, a widely used antihypertensive drug, has been detected in high concentrations in surface waters due to its unchanged excretion and incomplete degradation in wastewater treatment plants. This study investigated the degradation of valsartan and identified 14 degradation byproducts. The acute and chronic toxicity of these byproducts were evaluated in key organisms in the freshwater trophic chain.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight

Jiang Lin, Lianbao Chi, Qing Yuan, Busu Li, Mingbao Feng

Summary: This study investigated the photodegradation behavior and product formation of two representative pharmaceuticals in simulated estuary water. The study found that the formed transformation products of these pharmaceuticals have potential toxicity on marine organisms, including oxidative stress and damage to cellular components.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study

Hua Fang, Dongdong Jiang, Ye He, Siyi Wu, Yuehong Li, Ziqi Zhang, Haoting Chen, Zixin Zheng, Yan Sun, Wenxiang Wang

Summary: This study revealed that exposure to lower levels of air pollutants led to decreased pregnancy rates, with PM10, NO2, SO2, and CO emerging as the four most prominent pollutants. Individuals aged 35 and above exhibited heightened susceptibility to pollutants.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater

Ali Shaan Manzoor Ghumman, Rashid Shamsuddin, Amin Abbasi, Mohaira Ahmad, Yoshiaki Yoshida, Abdul Sami, Hamad Almohamadi

Summary: In this study, inverse vulcanized polysulfides (IVP) were synthesized by reacting molten sulfur with 4-vinyl benzyl chloride, and then functionalized using N-methyl D-glucamine (NMDG). The functionalized IVP showed a high mercury adsorption capacity and a machine learning model was developed to predict the amount of mercury removed. Furthermore, the functionalized IVP can be regenerated and reused, providing a sustainable and cost-effective adsorbent.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death

Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Valeria Palumbo, Maria Paola Scioli, Erica Giacobbi, Francesca Servadei, Gerry Melino, Alessandro Mauriello, Manuel Scimeca

Summary: This study investigated the presence of aluminum in human colon cancer samples and its potential association with biological processes involved in cancer progression. Aluminum was found in tumor areas of 24% of patients and was associated with epithelial to mesenchymal transition (EMT) and cell death. Additional analyses revealed higher tumor mutational burden and mutations in genes related to EMT and apoptosis in aluminum-positive colon cancers. Understanding the molecular mechanisms of aluminum toxicity may improve strategies for the management of colon cancer patients.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)