4.7 Article

Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 652, Issue -, Pages 709-717

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.10.292

Keywords

Thermophilic anaerobic co-digestion; Food waste; Paper waste; Microbial community; Cellulose degradation

Funding

  1. Japan Society for the Promotion of Science (JSPS) KAKENHI [18J11397]
  2. Japan Science and Technology Agency (JST) in the Japanese-Chinese Research Cooperative Program on Research and Development to Find Solutions to Environmental and Energy Issues in Urban Areas [16769220A]
  3. Tohoku University Division for Interdisciplinary Advanced Research and Education
  4. Grants-in-Aid for Scientific Research [18J11397] Funding Source: KAKEN

Ask authors/readers for more resources

The thermophilic anaerobic co-digestion of food waste and paper waste was successfully operated with a 0% to 70% fraction of paper waste. The variation of functional microbial community was investigated by 16S rRNA gene analysis. The results indicated that the hydrolyzing bacterial community changed from carbohydrate/protein-degrading bacteria to cellulose-degrading bacteria when the paper waste ratio was higher than 50%. Significant changes in the taxon responsible for cellulose degradation were found depending on the paper waste fraction. Cellulose-degrading bacteria outcompeted lactic acid bacteria in the degradation of monosaccharide, resulting in a decline in the proportion of lactic acid bacteria and the absence of an accumulation of lactic acid. At high paper waste ratios, because the cellulose-degrading bacteria, such as Defluviitoga tunisiensis, were more likely to degrade monosaccharides directly to acetate and hydrogen rather than to propionate and butyrate, the abundance of syntrophs was reduced. The variation of those bacteria with high H-2-producing ability significantly influenced the proportion of hydrogenotrophic archaea. The change in the microbial community as the paper waste fraction increased was illustrated with regard to anaerobic degradation steps. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Engineering, Environmental

The main anammox-based processes, the involved microbes and the novel process concept from the application perspective

Yan Guo, Zibin Luo, Junhao Shen, Yu-You Li

Summary: This paper reviews the main anammox-based processes, discusses their nitrogen removal performance and potential applications, and proposes the concept of integrating different processes to construct an efficient wastewater treatment system.

FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING (2022)

Article Engineering, Environmental

Inorganic carbon (IC) as a key factor affecting the performance of anammox-hydroxyapatite (HAP) process at extremely low temperature (7?°C)

Lan Lin, Ying Song, Yu-You Li

Summary: In this study, the anammox-hydroxyapatite (HAP) process was applied to achieve efficient nitrogen removal at a low temperature. The effect of inorganic carbon (IC) on the process was investigated, and it was found that IC had different effects on nitrogen and phosphorus removal. The phosphorus removal efficiency varied with the Ca/P ratio, and the formation of bio-induced HAP was confirmed using micro characterization technologies.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Green & Sustainable Science & Technology

Submerged anaerobic membrane bioreactor applied for mainstream municipal wastewater treatment at a low temperature: Sludge yield, energy balance and membrane filtration behaviors

Jiayuan Ji, Runda Du, Jialing Ni, Yujie Chen, Yisong Hu, Yu Qin, Toshimasa Hojo, Yu -You Li

Summary: The anaerobic membrane bioreactor (AnMBR) has the potential to be a low-cost and energy-producing wastewater treatment process. This study evaluated a constant low-temperature (15 C) AnMBR for the treatment of real municipal wastewater, and demonstrated that it can achieve high removal efficiency and energy production under optimal operational conditions.

JOURNAL OF CLEANER PRODUCTION (2022)

Article Environmental Sciences

New insights into the mechanisms underlying biochar-assisted sustained high-efficient co-digestion: Reducing thermodynamic constraints and enhancing extracellular electron transfer flux

Qian Li, Yaqian Liu, Wenyu Gao, Gaojun Wang, Mawuli Dzakpasu, Yu-You Li, Rong Chen

Summary: This study investigated the role of biochar in the anaerobic co-digestion of waste activated sludge and food waste. The results showed that biochar facilitated the co-digestion process, particularly in the syntrophic methanogenesis of volatile fatty acids. The thermodynamic analysis revealed that biochar alleviated limitations imposed by high hydrogen partial pressure and expanded the thermodynamic windows. Furthermore, biochar triggered direct interspecies electron transfer and enhanced interspecies hydrogen transfer, promoting the syntrophic methanogenesis.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Engineering, Environmental

Fast formation of anammox granules using a nitrification-denitrification sludge and transformation of microbial community

Lan Lin, Zibin Luo, Kyuto Ishida, Kampachiro Urasaki, Kengo Kubota, Yu-You Li

Summary: In this study, the start-up period of the anammox process was investigated using nitrification-denitrification sludge, and a successful start-up was achieved. The results showed high efficiency in nitrogen removal and significant improvements in granule properties, indicating the feasibility and importance of the anammox process for large-scale applications and sludge utilization.

WATER RESEARCH (2022)

Article Agricultural Engineering

High-solid co-digestion performance of lipids and food waste by mesophilic hollow fiber anaerobic membrane bioreactor

Ziang He, Yuanyuan Ren, Jianyong Liu, Yu-You Li

Summary: The co-digestion performance of mesophilic hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating high-solid lipids and food waste was studied for 180 days. The organic loading rate (OLR) was increased from 2.33 to 14.64 g-COD/L/d by increasing the lipids/FW ratio. The HF-AnMBR showed stable performance in terms of COD conversion efficiency, sludge growth rate, and concentrations of COD, proteins, and carbohydrates in permeate.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Evaluation of anaerobic membrane bioreactor treating dairy processing wastewater: Elemental flow, bioenergy production and reduction of CO2 emission

Min Ye, Qian Li, Yu-You Li

Summary: The study evaluated a high-rate anaerobic membrane bioreactor (AnMBR) for treating dairy processing wastewater (DPW). The AnMBR system exhibited superior performance in terms of methanogenic efficiency and bioenergy recovery, with a high net energy potential of 51.4-53.2 kWh/m3. The application of AnMBR led to a significant reduction of 54.1 kg CO2-eq/m3 compared to the conventional process, making it a promising approach for carbon neutrality and a circular economy.

BIORESOURCE TECHNOLOGY (2023)

Article Green & Sustainable Science & Technology

Long-term effects of phosphorus deficiency on one-stage partial nitrification-anammox system and recovery strategies

Liang Zhang, Zhe Tian, Yunzhi Qian, Fuqiang Chen, Yu -You Li, Xueke Wang, Cuilian Fu, Yongzhi Chi

Summary: The long-term treatment of phosphorus-deficient wastewater using a one-stage partial nitrification-anammox (PNA) process may have negative effects on the growth of functional bacteria. A 650-day experiment was conducted using a lab-scale PNA system to study the impact of long-term phosphorus deficiency on nitrogen removal efficiency and sludge characteristics. It was found that phosphorus deficiency led to a decrease in nitrogen removal efficiency, high sludge volume index, and sludge bulking. The abundance of hzsA in flocs decreased significantly. However, the biofilm showed better resistance to phosphorus deficiency. After the addition of PO43--P, the nitrogen removal rate improved, and sludge bulking disappeared.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Environmental Sciences

EDTA-enhanced alkaline anaerobic fermentation of landfill leachate-derived waste activated sludge for short-chain fatty acids production: Metals chelation and EPSs destruction

Jinghuan Luo, Li Jiang, Yuanyuan Wei, Yanmei Li, Guiyu Yang, Yu-You Li, Jianyong Liu

Summary: Alkaline anaerobic fermentation (AAF) coupled with EDTA addition was used to treat metal and EPSs-rich waste activated sludge (WAS). The addition of EDTA significantly promoted sludge solubilization and SCFAs production by chelating metals and destroying EPSs. This study provides an effective method for recovering carbon source from metal and EPSs-rich WAS.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Agricultural Engineering

Propidium monoazide- polymerase chain reaction reveals viable microbial community shifts in anaerobic membrane bioreactors treating domestic sewage at low temperature

Jialing Ni, Jiayuan Ji, Yu-You Li, Kengo Kubota

Summary: An anaerobic membrane bioreactor (AnMBR) was used to treat domestic sewage at 15 degrees C under different hydraulic retention time (HRT) conditions (6, 12, 16, and 24 h). The viability of microbial community in anaerobic digestion was assessed using Propidium monoazide (PMA)-PCR, which targeted microorganisms with intact cell membranes. The study found that a 6-hour HRT resulted in poor treatment performance, with low chemical oxygen demand removal efficiency and high mean trans-membrane pressure and flux. PMA-PCR combined with next-generation sequencing provided better identification of microbial changes compared to conventional 16S rRNA gene sequencing.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Difference of high-salinity-induced inhibition of ammonia-oxidising bacteria and nitrite-oxidising bacteria and its applications

Chihao Lin, Yanxu Liu, Yu-You Li, Jianyong Liu

Summary: This study proposes high-salinity treatment as a novel strategy for inactivating nitrite-oxidising bacteria (NOB) and achieving stable partial nitritation (PN). The study found that NOB are more sensitive to high salinity than ammonia-oxidising bacteria (AOB), and increasing salinity inhibited nitrification. After high-salinity treatment, nitrite accumulation rate (NAR) was above 33% during nitrification. A novel process for achieving mainstream PN was proposed and evaluated based on the results.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Coupled systems of pre-denitrification and partial nitritation/anammox improved functional microbial structure and nitrogen removal in treating swine manure digestate

Yunzhi Qian, Shilong He, Fuqiang Chen, Junhao Shen, Yan Guo, Yu Qin, Yu-You Li

Summary: This study evaluated the functional activity and microbial structure of a pre-denitrification and single-stage partial nitritation/anammox process (DB-SNAP) coupled system for effectively treating swine manure digestate (SMD). The results showed that the pre-denitrification reactor increased the nitrogen removal efficiency (NRE) by 5%, resulting in an average NRE of 96%. The DB-SNAP and nitrogen-limited strategy facilitated the rapid adoption of anammox bacteria (AnAOB) in the SMD.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal

Mengni Tao, Yu Kong, Zhaoqian Jing, Lin Guan, Qiusheng Jia, Yiwei Shen, Meijia Hu, Yu -You Li

Summary: Acorus calamus is recycled as an additional carbon source in microbial fuel cell-constructed wetlands for efficient nitrogen removal of low carbon wastewater. Alkali-pretreatment cleaves the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg per gram of A. calamus. Adding pretreated biomass in the anode of MFC-CW achieves maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2.

BIORESOURCE TECHNOLOGY (2023)

Article Agricultural Engineering

Low-carbon nitrogen removal from power plants circulating cooling water and municipal wastewater by partial denitrification-anammox

Jiayuan Deng, Xiangmin Xiao, Yu-You Li, Jianyong Liu

Summary: This study used the innovative low-carbon nitrogen removal process of partial denitrification-anammox (PD-A) to simultaneously treat PPCCW and municipal wastewater pre-treated with 10 mg/L Fe3+. The results showed that the effluent had a total nitrogen concentration lower than 10 mg/L, with a removal efficiency of 79.67 +/- 3.48%. The dominant anammox genus was unclassified_f_Brocadiaceae, indicating the stability of the reactor. Hydrolytic acidifying bacteria SBR1031 and Bacillus increased substantially after feeding with actual wastewater, leading to increased removal efficiencies of organic material and nitrogen, suggesting a synergistic effect with PD-A bacteria. Finally, a novel wastewater treatment process that fully recovers carbon, phosphorus, and water was proposed.

BIORESOURCE TECHNOLOGY (2023)

Article Environmental Sciences

Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Toshimi Nakajima, Mao Kuragano, Makoto Yamada, Ryo Sugimoto

Summary: This study compared the contribution of submarine groundwater discharge (SGD) to river nutrient budgets at nearshore and embayment scales, and found that SGD-derived nutrients become more important at larger spatial scales.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Impact of NO2 emissions from household heating systems with wall-mounted gas stoves on indoor and ambient air quality in Chinese urban areas

Fan Liu, Lei Zhang, Chongyang Zhang, Ziguang Chen, Jingguang Li

Summary: NO2 emissions from wall-mounted gas stoves used for household heating have become a significant source of indoor pollution in Chinese urban areas. The high indoor concentration of NO2 poses potential health risks to residents. It is urgently necessary to establish relevant regulations and implement emission reduction technologies to reduce NO2 emissions from wall-mounted gas stoves.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Letter Environmental Sciences

Letter to the editor regarding Collard et al. (2023): Persistence and mobility (defined as organic-carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of persistent and mobile substances

Hans Peter H. Arp, Raoul Wolf, Sarah E. Hale, Sivani Baskaran, Juliane Gluege, Martin Scheringer, Xenia Trier, Ian T. Cousins, Harrie Timmer, Roberta Hofman-Caris, Anna Lennquist, Andre D. Bannink, Gerard J. Stroomberg, Rosa M. A. Sjerps, Rosa Montes, Rosario Rodil, Jose Benito Quintana, Daniel Zahn, Herve Gallard, Tobias Mohr, Ivo Schliebner, Michael Neumann

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy

Philomina Onyedikachi Peter, Binessi Edouard Ifon, Francois Nkinahamira, Kayode Hassan Lasisi, Jiangwei Li, Anyi Hu, Chang-Ping Yu

Summary: This study investigates the relationship between dissolved organic matter (DOM) and Rare Earth Elements (REEs) in sediments from Yundang Lagoon, China. The results show four distinct fluorescent components, with protein-like substances being the most prevalent. Additionally, the total fluorescence intensity and LREE concentrations exhibit a synchronized increase from Outer to Inner to Songbai Lake core sediments. The findings demonstrate a strong correlation between DOM content and pollution levels.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity

Surya Gupta, Pasquale Borrelli, Panos Panagos, Christine Alewell

Summary: The objective of this study is to incorporate soil hydraulic properties into the erodibility factor (K) of USLE-type models. By modifying and improving the existing equations for soil texture and permeability, the study successfully included information on saturated hydraulic conductivity (Ksat) into the calculation of K factor. Using the Random Forest machine learning algorithm, two independent K factor maps with different spatial resolutions were generated. The results show that the decrease in K factor values has a positive impact on the modeling of soil erosion rates.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater

Jesmin Akter, Wendy J. M. Smith, Yawen Liu, Ilho Kim, Stuart L. Simpson, Phong Thai, Asja Korajkic, Warish Ahmed

Summary: The choice of workflow in wastewater surveillance has a significant impact on SARS-CoV-2 concentrations, while having minimal effects on HF183 and no effect on HAdV 40/41 concentrations. Certain components in the workflow can be interchangeable, but factors such as buffer type, chloroform, and homogenization speed can affect the recovery of viruses and bacteria.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China

Yu Luo, Xueting Yang, Diwei Wang, Hongmei Xu, Hongai Zhang, Shasha Huang, Qiyuan Wang, Ningning Zhang, Junji Cao, Zhenxing Shen

Summary: Atmospheric PM2.5, which can generate reactive oxygen species (ROS), is associated with cardiorespiratory morbidity and mortality. The study found that both the mass concentration of PM2.5 and the DTT activity were higher during the heating season than during the nonheating season. Combustion sources were the primary contributors to DTT activity during the heating season, while secondary formation dominated during the nonheating season. The study also revealed that biomass burning had the highest inherent oxidation potential among all sources investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy, Leah R. Gerber, Chelsea M. Rochman, Beth Polidoro

Summary: Plastic pollution has devastating consequences for marine organisms. This study uses a trait-based framework to develop a vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i. The index ranks 63 study species based on their vulnerability to macroplastic pollution, providing valuable information for species monitoring and management priorities.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem

Kenji Maurice, Amelia Bourceret, Sami Youssef, Stephane Boivin, Liam Laurent-Webb, Coraline Damasio, Hassan Boukcim, Marc-Andre Selosse, Marc Ducousso

Summary: Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Little is known about microbial community resistance and adaptation to disturbances, hindering our understanding of recovery latency and implications for ecosystem functioning. This study found that anthropic disturbance and natural disturbance have different effects on the topology and stability of soil microbial networks.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation

Yunhao Li, Yali Feng, Haoran Li, Yisong Yao, Chenglong Xu, Jinrong Ju, Ruiyu Ma, Haoyu Wang, Shiwei Jiang

Summary: Deep-sea mining poses a serious threat to marine ecosystems and human health by disturbing sediment and transmitting metal ions through the food chain. This study developed a new regenerative adsorption material, OMN@SA, which effectively removes metal ions. The adsorption mechanism and performance of the material for metal ion fixation were investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts

Antonio Medici, Margherita Lavorgna, Marina Isidori, Chiara Russo, Elena Orlo, Giovanni Luongo, Giovanni Di Fabio, Armando Zarrelli

Summary: Valsartan, a widely used antihypertensive drug, has been detected in high concentrations in surface waters due to its unchanged excretion and incomplete degradation in wastewater treatment plants. This study investigated the degradation of valsartan and identified 14 degradation byproducts. The acute and chronic toxicity of these byproducts were evaluated in key organisms in the freshwater trophic chain.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight

Jiang Lin, Lianbao Chi, Qing Yuan, Busu Li, Mingbao Feng

Summary: This study investigated the photodegradation behavior and product formation of two representative pharmaceuticals in simulated estuary water. The study found that the formed transformation products of these pharmaceuticals have potential toxicity on marine organisms, including oxidative stress and damage to cellular components.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study

Hua Fang, Dongdong Jiang, Ye He, Siyi Wu, Yuehong Li, Ziqi Zhang, Haoting Chen, Zixin Zheng, Yan Sun, Wenxiang Wang

Summary: This study revealed that exposure to lower levels of air pollutants led to decreased pregnancy rates, with PM10, NO2, SO2, and CO emerging as the four most prominent pollutants. Individuals aged 35 and above exhibited heightened susceptibility to pollutants.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater

Ali Shaan Manzoor Ghumman, Rashid Shamsuddin, Amin Abbasi, Mohaira Ahmad, Yoshiaki Yoshida, Abdul Sami, Hamad Almohamadi

Summary: In this study, inverse vulcanized polysulfides (IVP) were synthesized by reacting molten sulfur with 4-vinyl benzyl chloride, and then functionalized using N-methyl D-glucamine (NMDG). The functionalized IVP showed a high mercury adsorption capacity and a machine learning model was developed to predict the amount of mercury removed. Furthermore, the functionalized IVP can be regenerated and reused, providing a sustainable and cost-effective adsorbent.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death

Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Valeria Palumbo, Maria Paola Scioli, Erica Giacobbi, Francesca Servadei, Gerry Melino, Alessandro Mauriello, Manuel Scimeca

Summary: This study investigated the presence of aluminum in human colon cancer samples and its potential association with biological processes involved in cancer progression. Aluminum was found in tumor areas of 24% of patients and was associated with epithelial to mesenchymal transition (EMT) and cell death. Additional analyses revealed higher tumor mutational burden and mutations in genes related to EMT and apoptosis in aluminum-positive colon cancers. Understanding the molecular mechanisms of aluminum toxicity may improve strategies for the management of colon cancer patients.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)