4.3 Article

Left, right, or bilateral amygdala activation? How effects of smoothing and motion correction on ultra-high field, high-resolution functional magnetic resonance imaging (fMRI) data alter inferences

Journal

NEUROSCIENCE RESEARCH
Volume 150, Issue -, Pages 51-59

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neures.2019.01.009

Keywords

7T; Amygdala; Preprocessing; Submillimeter resolution; Reproducibility

Categories

Funding

  1. NIDA NIH HHS [F31 DA044013] Funding Source: Medline

Ask authors/readers for more resources

Given the amygdala's role in survival mechanisms, and its pivotal contributions to psychological processes, it is no surprise that it is one of the most well-studied brain regions. One of the common methods for understanding the functional role of the amygdala is the use of functional magnetic resonance imaging (fMRI). However, fMRI tends to be acquired using resolutions that are not optimal for smaller brain structures. Furthermore, standard processing includes spatial smoothing and motion correction which further degrade the resolution of the data. Inferentially, this may be detrimental when determining if the amygdalae are active during a task. Indeed, studies using the same task may show differential amygdala(e) activation. Here, we examine the effects of well-accepted preprocessing steps on whole-brain submillimeter fMRI data to determine the impact on activation patterns associated with a robust task known to activate the amygdala(e). We analyzed 7T fMRI data from 30 healthy individuals collected at sub-millimeter in-plane resolution and used a field standard preprocessing pipeline with different combinations of smoothing kernels and motion correction options. Resultant amygdalae activation patterns were altered depending on which combination of smoothing and motion correction were performed, indicating that whole-brain preprocessing steps have a significant impact on the inferences that can be drawn about smaller, subcortical structures like the amygdala. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available