4.8 Article

Degenerate Bose gases near a d-wave shape resonance

Journal

NATURE PHYSICS
Volume 15, Issue 6, Pages 570-576

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0455-2

Keywords

-

Funding

  1. National Key R&D Program of China [2018YFA0306501, 2018YFA0306502, 2016YFA0301600]
  2. NSFC of China [11874340, 11774426, 11434011, 11674393, 11734010, 11425417]
  3. Anhui Initiative in Quantum Information Technologies
  4. Fundamental Research Funds for the Central Universities [WK2340000081]
  5. Research Funds of Renmin University of China [16XNLQ03, 17XNH054]
  6. CAS

Ask authors/readers for more resources

Understanding quantum many-body systems with strong interactions and unconventional phases therein is one of the most challenging tasks in physics. In cold atom physics, this has been a focused research topic for nearly two decades, where strong interactions are naturally created and well manipulated by bringing the system close to a scattering resonance. However, most of the studies thus far have been limited to the s-wave resonance. Here, we report the experimental observation of a tunable and broad d-wave shape resonance in a quantum degenerate K-41 gas, hallmarked by the fact that the molecular binding energies are split into three branches. The measured lifetime in the resonance regime is found to be much longer than the characteristic timescale for many-body relaxations. The analysis of the breathing mode, excited by ramping through the resonance, suggests that a low-temperature atom-molecule mixture is produced. Our system offers great promise for studying a d-wave molecular superfluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Multidisciplinary

Tuning Anomalous Floquet Topological Bands with Ultracold Atoms

Jin-Yi Zhang, Chang-Rui Yi, Long Zhang, Rui-Heng Jiao, Kai-Ye Shi, Huan Yuan, Wei Zhang, Xiong-Jun Liu, Shuai Chen, Jian-Wei Pan

Summary: Floquet engineering allows for the creation of new topological states that cannot be achieved in static systems. In this study, we experimentally realize and characterize anomalous topological states using high-precision Floquet engineering for ultracold atoms trapped in a shaking optical Raman lattice.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Mode-Pairing Measurement-Device-Independent Quantum Key Distribution without Global Phase Locking

Hao-Tao Zhu, Yizhi Huang, Hui Liu, Pei Zeng, Mi Zou, Yunqi Dai, Shibiao Tang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Xiongfeng Ma, Teng-Yun Chen, Jian-Wei Pan

Summary: In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the challenges is the exponential decay of the key rate with transmission distance. However, a recently proposed mode-pairing idea has allowed high-performance quantum key distribution without global phase locking, achieving improved key rates over conventional schemes in both metropolitan and intercity distances.

PHYSICAL REVIEW LETTERS (2023)

Article Pediatrics

Effect of GATA3 rs3824662 gene polymorphism in Han Chinese children with pre-B-cell acute lymphoblastic leukemia with 10 years follow-up

Xinran Chu, Maoxiang Qian, Jin Yang, Dong Wu, Jing Gao, Lu Cao, Fang Fang, Jian Pan, Hui Zhang, Shaoyan Hu

Summary: The study aimed to evaluate the influence of GATA3 rs3824662 on pre-B-cell ALL susceptibility and long-term prognosis in Han Chinese children. The results showed that GATA3 rs3824662 was associated with susceptibility to pre-B-cell ALL and could be a risk factor for poor treatment response and treatment-related sepsis.

FRONTIERS IN PEDIATRICS (2023)

Article Nutrition & Dietetics

Weight loss in children undergoing allogeneic hematopoietic stem cell transplantation within the first 100 days: Its influencing factors and impact on clinical outcomes

Mei Yan, Jian Pan, Jie Huang, Changwei Liu, Xiaona Xia, Ting Zhu, Yuanyuan Wan, Yongjun Fang, Weibing Tang

Summary: This study evaluated the nutritional status of children who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) in the first 100 days. The study aimed to clarify the effect of weight loss on clinical outcomes and to analyze factors influencing weight loss. Data from 80 pediatric patients were collected and analyzed to investigate the factors affecting weight loss and the impact of weight loss on clinical outcomes.

FRONTIERS IN NUTRITION (2023)

Article Optics

High-rate quantum key distribution exceeding 110 Mb s-1

Wei Li, Likang Zhang, Hao Tan, Yichen Lu, Sheng-Kai Liao, Jia Huang, Hao Li, Zhen Wang, Hao-Kun Mao, Bingze Yan, Qiong Li, Yang Liu, Qiang Zhang, Cheng-Zhi Peng, Lixing You, Feihu Xu, Jian-Wei Pan

Summary: This article reports a QKD system that can generate keys at a record high rate of 115.8 Mb/s over a 10 km standard optical fiber and distribute keys over up to 328 km of ultralow-loss fiber. These abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time, and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications.

NATURE PHOTONICS (2023)

Article Physics, Multidisciplinary

Variational approach to quantum spin liquid in a Rydberg atom simulator

Yanting Cheng, Chengshu Li, Hui Zhai

Summary: Recently, the Rydberg blockade effect has been used to realize quantum spin liquid (QSL) on a kagome lattice, and evidence of QSL has been obtained experimentally by measuring non-local string order. In this paper, a Bardeen-Cooper-Schrieffer (BCS)-type variational wave function study is reported for the spin liquid state in this model, which is motivated by mapping the Rydberg blockade model to a lattice gauge theory. The predictions of this wave function are compared with experimental measurements of non-local string order, and good agreement is found.

NEW JOURNAL OF PHYSICS (2023)

Article Physics, Multidisciplinary

Full-Period Quantum Phase Estimation

Li-Zheng Liu, Yue-Yang Fei, Yingqiu Mao, Yi Hu, Rui Zhang, Xu-Fei Yin, Xiao Jiang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen, Jian-Wei Pan

Summary: In this study, a full-period quantum phase estimation approach is proposed and demonstrated. The approach adopts Kitaev's phase estimation algorithm to eliminate phase ambiguity and uses GHZ states to obtain phase values. Through an eight-photon experiment, the estimation of unknown phases in a full period is achieved, and the phase super-resolution and sensitivity beyond the shot-noise limit are observed. This research provides a new way for quantum sensing and represents a solid step towards its general applications.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits

Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man -Hong Yung, Xiaobo Zhu, Jian-Wei Pan

Summary: Although NISQ quantum computing devices are still limited in terms of qubit quantity and quality, quantum computational advantage has been experimentally demonstrated. Hybrid quantum and classical computing architectures have become the main paradigm for exhibiting NISQ applications, with the use of low-depth quantum circuits. This study demonstrates a circuit-cutting method for simulating quantum circuits with multiple logical qubits using only a few physical superconducting qubits, showcasing higher fidelity and scalability.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Solving Graph Problems Using Gaussian Boson Sampling

Yu-Hao Deng, Si-Qiu Gong, Yi-Chao Gu, Zhi-Jiong Zhang, Hua-Liang Liu, Hao Su, Hao-Yang Tang, Jia-Min Xu, Meng-Hao Jia, Ming-Cheng Chen, Han-Sen Zhong, Hui Wang, Jiarong Yan, Yi Hu, Jia Huang, Wei -Jun Zhang, Hao Li, Xiao Jiang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao -Yang Lu, Jian-Wei Pan

Summary: Gaussian boson sampling (GBS) is a protocol for demonstrating quantum computational advantage and is mathematically associated with graph-related and quantum chemistry problems. This study investigates the enhancement of GBS over classical stochastic algorithms on noisy quantum devices in the computationally interesting regime. Experimental results show the presence of GBS enhancement with a large photon-click number and robustness under certain noise, which may stimulate the development of more efficient classical and quantum-inspired algorithms.

PHYSICAL REVIEW LETTERS (2023)

Article Instruments & Instrumentation

Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm

Chao Yu, Tianyi Li, Xian-Song Zhao, Hai Lu, Rong Zhang, Feihu Xu, Jun Zhang, Jian-Wei Pan

Summary: In this study, a 4H-SiC single-photon avalanche diode (SPAD) based free-running ultraviolet single-photon detector (UVSPD) with ultralow afterpulse probability is reported. A beveled mesa structure is designed and fabricated for the 4H-SiC SPAD, which shows the characteristic of ultralow dark current. A readout circuit of passive quenching and active reset with a tunable hold-off time setting is further developed to significantly suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area is investigated for performance optimization. The compact UVSPD shows a PDE of 10.3%, a dark count rate of 133 kcps, and an afterpulse probability of 0.3% at 266 nm, indicating its potential for practical ultraviolet photon-counting applications.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Quantum Science & Technology

Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips

Xina Wang, Xufeng Jiao, Bin Wang, Yang Liu, Xiu-Ping Xie, Ming-Yang Zheng, Qiang Zhang, Jian-Wei Pan

Summary: This study demonstrates a low-noise quantum frequency conversion (QFC) process on the LNOI nanophotonic platform, achieving an internal conversion efficiency of 73% and an on-chip noise count of 900 counts per second (cps). The preservation of quantum statistical properties is also verified, indicating the potential applications of LNOI integrated circuits in quantum information. Additionally, an upconversion single-photon detector with a detection efficiency of 8.7% and a noise of 300 cps is constructed, paving the way for on-chip integrated single-photon detection.

NPJ QUANTUM INFORMATION (2023)

Article Instruments & Instrumentation

An integrated high-flux cold atomic beam source for strontium

Jie Li, Zhi-Peng Jia, Peng Liu, Xiao-Yong Liu, De-Zhong Wang, De-Quan Kong, Su-Peng Li, Xing-Yang Cui, Han-Ning Dai, Yu-Ao Chen, Jian-Wei Pan

Summary: This study presents the design and construction of an integrated cold atomic beam source for strontium (Sr). The source utilizes a compact Zeeman slower and an atomic deflector to slow down the thermal atomic beam and select the cold flux. The system is compact, highly tunable, lightweight, and requires low electrical power, making it suitable for constructing optical atomic clocks and quantum simulation devices based on Sr.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Multidisciplinary

Krylov complexity in open quantum systems

Chang Liu, Haifeng Tang, Hui Zhai

Summary: In this paper, the authors generalize Krylov complexity from a closed system to an open system coupled to a Markovian bath, where Lindbladian evolution replaces Hamiltonian evolution. They show that the Krylov complexity in open systems can be mapped to a non-Hermitian tight-binding model in a half-infinite chain. The strength of the non-Hermitian terms increases linearly with the increase of the Krylov basis index n.

PHYSICAL REVIEW RESEARCH (2023)

Article Physics, Multidisciplinary

Observation of many-body scarring in a Bose-Hubbard quantum simulator

Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papie, Jian-Wei Pan

Summary: The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems has led to the discovery of quantum many-body scarring. This phenomenon allows for the delay of thermalization by preparing the system in special initial states. In this study, the researchers demonstrate many-body scarring in a Bose-Hubbard quantum simulator, using previously unknown initial conditions. This work opens up new possibilities for exploring the relationship between scarring and various quantum phenomena.

PHYSICAL REVIEW RESEARCH (2023)

Article Optics

Preparation of a quantum degenerate mixture of 23Na 40K molecules and 40K atoms

Jin Cao, Huan Yang, Zhen Su, Xin-Yao Wang, Jun Rui, Bo Zhao, Jian-Wei Pan

Summary: We have successfully prepared a quantum degenerate mixture of 23Na 40K molecules and 40K atoms. The atoms are highly degenerate with a large number ratio, while the molecules are in a moderately degenerate state. The elastic collisions between the atoms and molecules provide a thermalization mechanism, allowing the molecules to reach thermal equilibrium before significant losses occur. The degeneracy of the molecules is maintained for a sufficient time interval for further study and production of ultracold triatomic molecular gases.

PHYSICAL REVIEW A (2023)

No Data Available