4.6 Article

Carbon-based nanomaterials as stimulators of production of pharmaceutically active alkaloids in cell culture of Catharanthus roseus

Journal

NANOTECHNOLOGY
Volume 30, Issue 27, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/ab1286

Keywords

carbon-based nanomaterials; Catharanthus roseus; carbon nanotubes; secondary metabolites; alkaloids; anti-cancer compounds

Funding

  1. Arkansas Space Grant Consortium

Ask authors/readers for more resources

Carbon-based nanomaterials (CBNs) were previously described as regulators of plant cell division. Here, we demonstrated the ability of multi-walled carbon nanotubes (MWCNT) and graphene to enhance biomass production in callus culture of the medicinal plant Catharanthus roseus cultivated in dark conditions. Furthermore, both tested CBNs were able to stimulate biosynthesis of total produced alkaloids in CBN-exposed callus culture of Catharanthus. In one case, total alkaloids in CBN-exposed Catharanthus were double that of unexposed Catharanthus. Analysis of metabolites by HPLC revealed that production of the pharmaceutically active alkaloids vinblastine and vincristine was dramatically enhanced in callus exposed to MWCNT or graphene in both dark and light conditions of callus cultivation. In vitro assays (MTT, flow cytometry) demonstrated that total alkaloid extracts derived from Catharanthus callus treated with CBNs significantly reduced cell proliferation of breast cancer (MCF-7) and lung cancer (A549) cell lines compared to the application of extracts derived from untreated Catharanthus callus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available