4.8 Article

Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

Journal

NANO RESEARCH
Volume 12, Issue 4, Pages 939-946

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-019-2328-5

Keywords

electron microscopy; scanning precession electron diffraction; Eshelby twist; screw dislocation; nanowire; indium phosphide

Funding

  1. CNPq [302767/2012-6, 479486/ 2012-3]
  2. Royal Society
  3. European Research Council [291522-3DIMAGE]
  4. EPSRC [EP/R025517/1]
  5. FAPESP [2013/02300-1, 2013/10957-0]
  6. European Union [312483]
  7. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [13/10957-0] Funding Source: FAPESP

Ask authors/readers for more resources

Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30-40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available