4.1 Article

Kidney nanotoxicity studied in human renal proximal tubule epithelial cell line TH1

Publisher

ELSEVIER
DOI: 10.1016/j.mrgentox.2019.01.012

Keywords

Inorganic nanoparticles; Human renal proximal tubule cells; Comet assay; TEM analysis; AAS analysis; ICP-MS

Funding

  1. H2020 project HISENTS [685817]
  2. COST Action [CA15132]
  3. VEGA grant [2/0056/17]
  4. European Regional Development Fund [26240120033]
  5. SASPRO Programme - European Union [0057/01/02]
  6. Slovak Academy of Sciences
  7. EEA projectSK0020

Ask authors/readers for more resources

Progressive expansion of nanomaterials in our everyday life raises concerns about their safety for human health. Although kidneys are the primary organs of xenobiotic elimination, little attention has been paid to the kidneys in terms of nanotoxicological studies up to now. Here we investigate the cytotoxic and genotoxic potential of four solid-core uncoated inorganic nanoparticles (TiO(2)NPs, SiO(2)NPs, Fe3O4 NPs and AuNPs) using the human renal proximal tubule epithelial TH1 cells. To mimic the in vivo conditions more realistic, TH1 cells were exposed in vitro to inorganic NPs under static as well as dynamic conditions for 3 h and 24 h. The medium throughput alkaline comet assay (12 minigels per slide) was employed to evaluate the impact of these NPs on genome integrity and their capacity to produce oxidative lesions to DNA. The accumulation and localization of studied inorganic NPs inside the cells was monitored by transmission electron microscopy (TEM) and the efficacy of internalization of particular NPs was determined by atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). From all the tested NPs, only Fe(3)O(4)NPs induced a slight cytotoxicity in TH1 cells exposed to high concentrations ( > 700 mu g/ml) for 24 h. On the other hand, the inorganic NPs did not increase significantly the level of DNA strand breaks or oxidative DNA damage regardless of the treatment mode (static vs. dynamic conditions). Interestingly, substantial differences were observed in the internalized amount of inorganic NPs in TH1 cells exposed to equivalent (2.2 mu g/ml) concentration. Fe(3)O(4)NPs were most efficiently taken up while the lowest quantity of particles was determined in TiO(2)NPs-treated cells. As the particle size and shape of individual inorganic NPs in culture medium was nearly identical, it is reasonable to suppose that the chemical composition may contribute to the differences in the efficacy of NPs uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available