4.7 Article

Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers

Journal

MACROMOLECULAR BIOSCIENCE
Volume 19, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.201800468

Keywords

multifunctionality; nanocarriers; PGylation; polyglycerol; protein corona

Funding

  1. DFG-funded position through the Excellence Initiative by the Graduate School Materials Science in Mainz [GSC 266]
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB 1066]

Ask authors/readers for more resources

Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (M-n 2-4 kg mol(-1), D < 1.36) by post-modification. PGs are used in the miniemulsion/solvent evaporation procedure to prepare model nanocarriers. Their behavior in human blood plasma is investigated to determine the influence of the negative charges on the protein adsorption. The protein corona of PGylated nanocarriers is similar to PEGylated analogs (on same nanocarriers), but the protein pattern could be gradually altered by the integration of phosphonates. This is the first report on the gradual increase of negative charges on nanocarriers and intriguingly up to a certain amount of phosphonate groups per nanocarrier the protein pattern remains relatively unchanged, which is important for the future design of nanocarriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available