4.6 Article

Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing

Journal

ANALYST
Volume 141, Issue 16, Pages 4870-4878

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6an00466k

Keywords

-

Funding

  1. University of Cincinnati start-up funds

Ask authors/readers for more resources

Selectivity is often a major obstacle for localized surface plasmon resonance-based biosensing in complex biological solutions. An additional degree of selectivity can be achieved through the incorporation of shape complementarity on the nanoparticle surface. Here, we report the versatile fabrication of substrate-bound Au-Ag nanobowl arrays through the galvanic ion replacement of silver nanodisk arrays. Both localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) were carried out to detect the binding of analytes of varying size to the nanobowl arrays. Large increases in the LSPR and SERS response were measured for analytes that were small enough to enter the nanobowls, compared to those too large to come into contact with the interior of the nanobowls. This size-selective sensing should prove useful in both size determination and differentiation of large analytes in biological solutions, such as viruses, fungi, and bacterial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available