4.6 Article

Chalcogenides as thermoelectric materials

Journal

JOURNAL OF SOLID STATE CHEMISTRY
Volume 270, Issue -, Pages 273-279

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jssc.2018.10.049

Keywords

Thermoelectric; Energy; Chalcogenide; Crystal structure; Physical properties

Funding

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN-2015-04584]

Ask authors/readers for more resources

Thermoelectric materials can be utilized to generate electricity from a temperature gradient, thereby recycling the nowadays abundant waste heat, as well as for cooling applications by creating a temperature gradient from electricity. The former is based on the Seebeck effect, and the latter on the Peltier effect. Noticing the continuously declining fossil fuel resources and mankind's increasing need for energy, the importance for clean thermoelectric energy generation continues to climb. Traditional thermoelectric materials were based on the binary tellurides Bi2Te3 and PbTe, which have been utilized for decades. The focus on tellurium as the heaviest non-radioactive chalcogen stems from the observation that heavier elements are advantageous for a reduced thermal conductivity, which is essential for the thermoelectric energy conversion. Moreover, tellurides are less ionic than sulfides or selenides, which leads to an enhanced carrier mobility that is advantageous for the desired high electrical conductivity. This review presents these traditional routes to low thermal conductivity, as well as alternatives based on the lighter analogues of tellurium, namely sulfur and selenium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available