4.6 Article

3D Hilbert fractal acoustic metamaterials: low-frequency and multi-band sound insulation

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 52, Issue 19, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6463/ab092a

Keywords

hilbert fractal acoustic metamaterials; negative bulk modulus; negative mass density; multi-band sound insulation; deep-subwavelength scales

Funding

  1. Ministry of Education for Equipment Pre-Research [6141A02033216]
  2. Australian Research Council (ARC) [DP160102491]
  3. China Scholarship Council [201706130093]
  4. Hunan Provincial Innovation Foundation for Postgraduate [CX2016B080]

Ask authors/readers for more resources

In this work, we present a class of three-dimensional (3D) labyrinthine acoustic metamaterials with self-similar fractal technique, which can produce multiple frequency-band sound insulation in deep-subwavelength scale. By simultaneously exploiting the multi-frequency bandgaps and the low-frequency characteristics, the Hilbert cubes are explored to design the 3D Hilbert fractal acoustic metamaterials (HFAMs). The multiple-band features of the HFAMs are examined by the finite element method and the effective medium theory, in which the negative bulk modulus and the mass density are responsible for the formation of the multi-bandgaps. These multi-frequency properties are induced by the Fabry-Perot multi-resonance of 3D HFAMs, which possess an ultra-high refractive index. Hence, the multi-band sound insulations of 3D HFAMs with the negative effective property are achieved below 500 Hz. These properties of the designed 3D HFAMs provide an effective way for acoustic metamaterials to achieve multi-band filtering and noise attenuation in the low-frequency regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available