4.4 Article

Entropy Influenced RNA Diffused Quantum Chaos to Conserve Medical Data Privacy

Journal

INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
Volume 58, Issue 6, Pages 1937-1956

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10773-019-04088-6

Keywords

Quantum encryption; RNA; NEQR; RQC; DICOM

Ask authors/readers for more resources

Recently, the protection and transferring of medical images among peers in the established communication link has become a significant security threat. In this paper, to curtail the threats posed on the open communal channel, RNA diffused Quantum Chaos (RQC) encryption algorithm for colour Digital Imaging and Communications in Medicines (DICOM) image is proposed for the first time. It employs entropy estimation and updates it in the key stream generation and thereby avoids the limitation in traditional encryption schemes of scrambling the position of the pixels before diffusion. The proposed encryption scheme uses Novel Enhanced Quantum Representation (NEQR) and qubit arrangement to store the grayscale value of every pixel in the DICOM image. Using the key generated from the chaotic map, the image is diffusedusing the quantum Controlled-NOT(CNOT)gate. Further, to enrich the diffusion process, Deoxyribonucleic Acid (DNA) transcript Ribo Nucleic Acid (RNA) is used to diffuse the quantum bits in the image matrix with its self-complementary sequence generation. The diffused image is permuted by incorporating the circular shift operation. The efficiency of the proposed algorithm has been validated by using encryption quality metrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available