4.5 Article

Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems

Journal

ENERGIES
Volume 12, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/en12050776

Keywords

battery storage; electricity price; solar photovoltaic; solar energy; techno-economic assessment; thermal energy storage

Categories

Funding

  1. Swiss Innovation Agency Innosuisse
  2. Swiss Competence Center for Energy Research SCCER FEEBD
  3. Ecole Polytechnique Federale de Lausanne Library

Ask authors/readers for more resources

Due to climate change and the need to decrease the carbon footprint of urban areas, there is an increasing pressure to integrate renewable energy and other components in urban energy systems. Most of the models or available tools do not provide both an economic and environmental assessment of the energy systems and thus lead to the design of systems that are sub-optimal. A flexible and modular simulation tool, Eco-Sim, is thus developed in the current study to conduct a comprehensive techno-economic and environmental assessment of a distributed energy system considering different configuration scenarios. Subsequently, an intermodel comparison is conducted with the Hybrid Optimization Model for Electric Renewable (HOMER) Pro as well as with a state-of-the-art industrial tool. Eco-Sim is then extended by including the heating demand, thermal conversion (by using heat pumps and solar thermal) methods and thermal storage. A parametric analysis is conducted by considering different capacities of solar photovoltaics (PV), solar thermal panels and energy storage technologies. The levelized cost of electricity, the autonomy level and the COemissions are used as the key performance indicators. Based on the analysis of a study case conducted in a neighbourhood in Geneva, Switzerland, the study reveals that, with the present market prices for batteries and seasonal changes in solar energy potential, the combination of solar PV with battery storage doesn't bring a significant autonomy to the system and increases the CO emissions of the system. However, the integration of thermal storage and solar thermal generation is shown to considerably increase the autonomy of the neighbourhood. Finally, multiple scenarios are also run in order to evaluate the sensitivity of economic parameters on the performance indicators of the system. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling installation costs or stronger policies in favor of renewable energy seem necessary for the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available