4.3 Article

Lower molar shape and size in prosimian and platyrrhine primates

Journal

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY
Volume 161, Issue 2, Pages 237-258

Publisher

WILEY
DOI: 10.1002/ajpa.23021

Keywords

allometry; dentition; diet; geometric morphometrics

Funding

  1. American Society of Mammalogists
  2. Geological Society of America
  3. Stony Brook University
  4. Evolving Earth Foundation
  5. NSF [DDIG BCS-062254, BCS 1304045]
  6. Leakey Foundation Research Grant

Ask authors/readers for more resources

The goal of this research is to evaluate the relative strength of the influences of diet, size, and phylogenetic signal on dental geometric shape. Accurate comprehension of these factors and their interaction is important for reconstructing diet and deriving characters for a cladistic analysis in fossil primates. Geometric morphometric analysis is used to identify axes of shape variation in the lower second molars of (a) prosimian primates and (b) platyrrhines. Landmarks were placed on mCT-generated surface renderings. Landmark configurations were aligned using generalized Procrustes analysis. Principal components analysis and phylogenetic principal components analysis (pPCA) were performed on species average landmark co-ordinates. pPCs were examined with phylogenetic generalized least squares analysis for association with size and with diet. PCs from both phylogenetic and non-phylogenetic analyses were sufficient to separate species by broad dietary categories, including insectivores and folivores. In neither analysis was pPC1 correlated with tooth size, but some other pPCs were significantly correlated with size. The pattern of association between pPCs and size altered when centroid size and dietary variables were combined in the model; effects of diet factors typically exceeded effects of size. These results indicate a dominant phylogenetic and dietary signal in molar shape but also show some shape change correlated with size in the absence of obvious dietary associations. Geometric morphometric analysis appears to be useful for tracking functional traits in molars, particularly in tracking differences between folivorous and insectivorous species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available