4.7 Article

Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO-MgO-SiO2-(Na2O) glass ceramics with different CaO/MgO ratio

Journal

CERAMICS INTERNATIONAL
Volume 45, Issue 9, Pages 11216-11225

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2019.02.106

Keywords

Cr2O3; Raman spectrum; Crystallization; Thermodynamics; Microstructure; Glass ceramics

Funding

  1. National Natural Science Foundation [51674022]

Ask authors/readers for more resources

Cr2O3 is often used as a glass additive to prepare glass ceramics. Chromium element exists mainly in two parts in the glass ceramics: chromium-containing spinel and soluble chromium in glass matrix. Herein, effect of soluble chromium on the CaO-MgO-SiO2-(Na2O) glass system is researched. Glass and glass ceramics were characterized by Raman spectrum, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry. It is found that the addition of Cr2O3 increased the Q(2)si structure unit in glass networks, especially in glass systems with high MgO content. The crystallization temperatures of the systems were increased with the addition of Cr2O3. Soluble chromium reduced the crystallization activation energy of the glass system slightly, but did not alter its crystallization behavior (surface crystallization). With the increase of MgO content, the mineral phases of the glass ceramics gradually changed from wollastonite to diopside. Cr2O3 reduced the lattice parameters of the mineral phases. The addition of Cr2O3 has a significant effect on grain refinement and structural compactness of the glass ceramics system with high MgO content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available