4.7 Article

Reaction-based kinetic model for the reduction of supported NiO oxygen transfer materials by CH4

Journal

CATALYSIS TODAY
Volume 343, Issue -, Pages 72-79

Publisher

ELSEVIER
DOI: 10.1016/j.cattod.2019.01.041

Keywords

Chemical looping steam methane reforming; NiO-based oxygen transfer materials; Alumina, silica and zirconia support materials; Rate-based kinetic modeling; CH4 decomposition

Funding

  1. QNRF (Qatar Foundation) [5-420-2-166]

Ask authors/readers for more resources

The focus of this study is to assess the reaction rate-based kinetics of three NiO-based oxygen transfer materials (OTMs) supported on ZrO2 , Al2O3 and SiO2 under CH4 reduction. Both NiO weight change data and gaseous phase composition from TGA-MS tests are utilized for the elucidation of the reaction scheme. We show that mainly CH4, as well as CO and H-2 (primary NiO reduction products by CH4), are involved in the reduction process under a varying extent that depends on the support used. The developed kinetic model is first order dependent on the concentration of the main reductant at each reaction and a function of the NiO/Ni concentration. On ZrO2 , NiO is exclusively reduced by CH4 via both total and partial oxidation. On the other hand, in addition to CH4, CO and H-2 also contribute to NiO reduction on Al2O3 and SiO2 . Still, total and partial CH4 oxidation are the dominant routes. In the case of SiO2 in particular, the reduction rate of NiO by CO and H-2 is the highest among all OTMs. The CH4 decomposition reaction, catalyzed by the metallic nickel sites, also takes place via the Langmuir-Hinshelwood mechanism after the completion of the NiO reduction. The rate of this reaction correlates with the surface area of the materials due to the higher population of active metallic nickel sites on the surface, leading to carbon deposition in the order NiO/Al2O3 > NiO/SiO2 > NiO/ZrO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available