4.7 Article

Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803

Journal

BIOTECHNOLOGY FOR BIOFUELS
Volume 12, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13068-019-1378-y

Keywords

Cyanobacterium; Photosynthesis; Electron sink; Electron balance; Quantum efficiency

Funding

  1. European Regional Development Funds
  2. Helmholtz Association

Ask authors/readers for more resources

BackgroundCyanobacteria are ideal model organisms to exploit photosynthetically derived electrons or fixed carbon for the biotechnological synthesis of high value compounds and energy carriers. Much effort is spent on the rational design of heterologous pathways to produce value-added chemicals. Much less focus is drawn on the basic physiological responses and potentials of phototrophs to deal with natural or artificial electron and carbon sinks. However, an understanding of how electron sinks influence or regulate cellular physiology is essential for the efficient application of phototrophic organisms in an industrial setting, i.e., to achieve high productivities and product yields.ResultsThe physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 to electron sink variation were investigated in a systematic and quantitative manner. A variation in electron demand was achieved by providing two N sources with different degrees of reduction. By additionally varying light and CO2 availabilities, steady state conditions with strongly differing source-sink ratios were established. Balancing absorbed photons and electrons used for different metabolic processes revealed physiological responses to sink/source ratio variation. Surprisingly, an additional electron sink under light and thus energy limitation was found not to hamper growth, but was compensated by improved photosynthetic efficiency and activity. In the absence of carbon and light limitation, an increase in electron demand even stimulated carbon assimilation and growth.ConclusionThe metabolism of Synechocystis sp. PCC 6803 is highly flexible regarding the compensation of additional electron demands. Under light limitation, photosynthesis obviously does not necessarily run at its maximal capacity, possibly for the sake of robustness. Increased electron demands can even boost photosynthetic activity and growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available