4.8 Article

Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-Estradiol

Journal

BIOSENSORS & BIOELECTRONICS
Volume 126, Issue -, Pages 15-22

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.10.004

Keywords

Zinc oxide nanorods; Endocrine disrupting chemicals; 17 beta-Estradiol; Capacitive sensor; EIS

Funding

  1. BITS, Pilani

Ask authors/readers for more resources

Advances in nanostructured materials have facilitated the development of novel sensitive techniques for detection of environmental and clinical analytes. There is immense need for development of devices that can detect analytes at concentrations as low as few pg mL(-1). The comparable size of nanostructured materials and biomolecules enabled the integration of biological systems with nanometer sized structures. Herein, we demonstrate a Zinc Oxide nanorods (ZnONRs) integrated ultrasensitive label-free biosensor with femtomolar (0.01 pg mL(-1)) sensitivity for the endocrine disruptor 17 beta-Estradiol (E2). The ZnONRs, average width 50 nm and length 325 nm, were grown on the silver electrode surface (Ag-ZnONRs). Monoclonal antibodies of E2 (mAb-E2) were covalently immobilized on ZnONRs surface and measured using electrochemical impedance spectroscopy (EIS). A linear detection range of 0.1-200 pg mL(-1) for E2 with R-2 = 0.99 and % RSD = 4.35 (n = 3, assay volume 90 mu L) was achieved for the developed nano-sensing system. A significant enhancement in the sensitivity was achieved in the presence of ZnONRs, enabling the limit of quantification down to 0.1 pg(-1) with 2.7 % capacitance change per decade. In addition, a further increase in sensitivity due to assay volume reduction (20 mu L) was observed enabling further scope of miniaturization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available