4.7 Article

Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbadis.2019.02.008

Keywords

NDRG1; Autophagy; Proteasome; Metastatic suppressor

Funding

  1. Cancer Australia
  2. Cure Cancer Australia Foundation
  3. AMP Foundation
  4. Research Training Program Stipend Scholarship from the University of Sydney
  5. National Health and Medical Research Council of Australia
  6. Cancer Institute NSW
  7. Avner Pancreatic Cancer Foundation

Ask authors/readers for more resources

N-myc downstream regulated gene 1 (NDRG1) is an intriguing metastasis suppressor protein, which plays an important role in suppressing multiple oncogenic signaling pathways. Interestingly, multiple isoforms of NDRG1 have been identified, although the molecular mechanisms involved in their generation remains elusive. Herein, we demonstrate the role of two mechanisms involving autophagic and proteasomal machinery as part of an intricate system to generate different NDRG1 isoforms. Examining multiple pancreatic cancer cell-types using immunoblotting demonstrated three major isoforms of NDRG1 at approximately 41-, 46- and 47-kDa. The top NDRG1 band at 47-kDa was shown to be processed by the proteasome, followed by autophagic metabolism of the middle NDRG1 band at 46-kDa. The role of the proteasomal and autophagic pathways in NDRG1 processing was further confirmed by co-localization analysis of confocal images using PSMD9 and LC3 as classical markers of these respective pathways. All NDRG1 isoforms were demonstrated to be, at least in part, phosphorylated forms of the protein. Inhibition of two well-characterized upstream kinases of NDRG1, namely GSK3I3 and SGKI, resulted in decreased levels of the top NDRG1 band. Studies demonstrated that inhibition of GSK313 decreased levels of the top 47-kDa NDRG1 band, independent of its kinase activity, and this effect was not mediated via the proteasomal pathway. In contrast, the decrease in the top NDRG1 band at 47-kDa after SGK1 inhibition, was due to suppression of its kinase activity. Overall, these studies elucidated the complex and intricate regulatory pathways involving both proteasomal and autophagic processing of the metastasis suppressor protein, NDRG1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available