4.7 Article

Functional Characterization of Deformation Fields

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 38, Issue 1, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3292480

Keywords

Shape exploration; functional maps

Funding

  1. KAUST [CRG6 2017 3426]
  2. Google Focused Research Award
  3. ERC [758800]

Ask authors/readers for more resources

In this article, we present a novel representation for deformation fields of 3D shapes, by considering the induced changes in the underlying metric. In particular, our approach allows one to represent a deformation field in a coordinate-free way as a linear operator acting on real-valued functions defined on the shape. Such a representation provides both a way to relate deformation fields to other classical functional operators and enables analysis and processing of deformation fields using standard linear-algebraic tools. This opens the door to a wide variety of applications such as explicitly adding extrinsic information into the computation of functional maps, intrinsic shape symmetrization, joint deformation design through precise control of metric distortion, and coordinate-free deformation transfer without requiring pointwise correspondences. Our method is applicable to both surface and volumetric shape representations and we guarantee the equivalence between the operator-based and standard deformation field representation under mild genericity conditions in the discrete setting. We demonstrate the utility of our approach by comparing it with existing techniques and show how our representation provides a powerful toolbox for a wide variety of challenging problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available