4.6 Article

Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma

Journal

CELLS
Volume 7, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/cells7120265

Keywords

miR-34b; anaplastic thyroid carcinoma; liposome

Categories

Funding

  1. Griffith University
  2. Queensland Cancer Council
  3. Menzies Health Institute of Queensland, Griffith University

Ask authors/readers for more resources

This study aims to determine the functional roles of microRNA-34b-5p (miR-34b) in the suppression of anaplastic thyroid carcinoma. We used hydration-of-freeze-dried-matrix (HFDM) formulated liposomes (liposome-loaded miR-34b) for effective delivery of miR-34b to anaplastic thyroid carcinoma in vitro and in vivo. Real time polymerase chain was used to determine the level of miR-34b. Immunocytochemistry, Western blot and ELISA were carried out to determine the effect of this manipulation on VEGF-A expression. In addition, an in vivo xenotransplantation mouse model was used to investigate the functional roles of overexpression of miR-34b in the carcinoma. In anaplastic thyroid carcinoma cells, miR-34b expression was low and significant overexpression (p < 0.05) was noted following transfection with liposome-loaded miR-34b. The miR-34b overexpressed thyroid carcinoma cell lines showed reduction in VEGF-A protein expression, decreased cell proliferation, decreased wound healing, reduced cell cycle progression and increased apoptosis (p < 0.05). In in vivo experiments, when compared to control groups, smaller tumours formed upon intravenous administration of liposome-loaded miR-34b. To conclude, the current study confirmed the tumour suppressor properties of miR-34b via VEGF-A regulation in anaplastic thyroid carcinoma. In addition, delivery of miR-34b using cationic liposome could be a useful therapeutic strategy for targeting therapy in the carcinoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available