4.8 Article

A new mathematical model to explore microbial processes and their constraints in phytoplankton colonies and sinking marine aggregates

Journal

SCIENCE ADVANCES
Volume 4, Issue 10, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aat1991

Keywords

-

Funding

  1. Max Planck Society (MPG)
  2. Deutsche Deutsche Forschungsgemeinschaft (DFG) [KH 31/8-1]
  3. University of Gothenburg
  4. Swedish Research Council (VR) [Dnr: 621-2011-4406, Dnr: 2015-05322]
  5. Helmholtz Young Investigator Group SEAPUMP Seasonal and regional food web interactions with the biological pump [VH-NG-1000]
  6. Alfred Wegener Institute for Polar and Marine Research
  7. DFG-Research Center/Cluster of Excellence MARUM The Ocean in the Earth System

Ask authors/readers for more resources

N-2-fixing colonies of cyanobacteria and aggregates of phytoplankton and detritus sinking hundreds of meters per day are instrumental for the ocean's sequestration of CO2 from the atmosphere. Understanding of small-scale microbial processes associated with phytoplankton colonies and aggregates is therefore crucial for understanding large-scale biogeochemical processes in the ocean. Phytoplankton colonies and sinking aggregates are characterized by steep concentration gradients of gases and nutrients in their interior. Here, we present a mechanistic mathematical model designed to perform modeling of small-scale fluxes and evaluate the physical, chemical, and biological constraints of processes that co-occur in phytoplankton colonies and sinking porous aggregates. The model accurately reproduced empirical measurements of O-2 concentrations and fluxes measured in sinking aggregates. Common theoretical assumptions of either constant concentration or constant flux over the entire surface did not apply to sinking aggregates. Consequently, previous theoretical models overestimate O-2 flux in these aggregates by as high as 15-fold.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available