4.8 Article

Unleashing Strain Induced Ferroelectricity in Complex Oxide Thin Films via Precise Stoichiometry Control

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 26, Issue 40, Pages 7271-7279

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201602767

Keywords

-

Funding

  1. National Science Foundation MRSEC Center for Nanoscale Science at Penn State [DMR1420620]
  2. National Science Foundation [DMR-1350273]
  3. State of North Carolina
  4. National Science Foundation
  5. National Science Foundation Graduate Research Fellowship [DGE-1252376]
  6. Direct For Mathematical & Physical Scien
  7. Division Of Materials Research [1350273] Funding Source: National Science Foundation

Ask authors/readers for more resources

Strain tuning has emerged as a powerful means to enhance properties and to induce otherwise unattainable phenomena in complex oxide films. However, by employing strain alone, the predicted properties sometimes fail to emerge. In this work, the critical role of precise stoichiometry control for realizing strain-induced ferroelectricity in CaTiO3 films is demonstrated. An adsorption controlled growth window is discovered for CaTiO3 films grown by hybrid molecular beam epitaxy, which ensures an excellent control over the Ti:Ca atomic percent ratio of <0.8% in the films. Superior ferroelectric and dielectric properties are found for films grown inside the stoichiometric growth window, yielding maximum polarization, dielectric constant, and paraelectric-to-ferroelectric transition temperatures. Outside this growth window, properties are severely deteriorated and ultimately suppressed by defects in the films. This study exemplifies the important role of precise compositional control for achieving strain-induced properties. Untangling the effects of strain and stoichiometry on functional properties will accelerate both fundamental discoveries yet to be made in the vast materials design space of strained complex oxide films, as well as utilization of strain-stabilized phenomena in future devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available