4.7 Article

Variability of Internal Wave-Driven Mixing and Stratification in Canadian Arctic Shelf and Shelf-Slope Waters

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 123, Issue 12, Pages 9178-9195

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JC014342

Keywords

turbulent dissipation; turbulent diffusivity; stratification; spatial variability; temporal variability; turbulent heat flux

Categories

Funding

  1. Canada Foundation for Innovation
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Beaufort Gyre Exploration Program at the Woods Hole Oceanographic Institution
  4. NSERC through the Canadian Arctic GEOTRACES program - Climate Change & Atmospheric Research program [NSERC RGPCC 433848-12]
  5. NSERC [NSERC-2015-04866]
  6. Earth, Ocean & Atmospheric Sciences Department at the University of British Columbia (UBC)
  7. Vanier Canada Graduate Scholarships program
  8. Killam Doctoral Scholarships program
  9. UBC Four Year Fellowship Program
  10. NSERC Canada

Ask authors/readers for more resources

Our understanding of ocean mixing is challenged by its patchy, episodic nature and a scarcity of direct measurements, especially in the Arctic Ocean. In this study, we exploit a historical record of nearly 3,000 conductivity-temperature-depth profiles collected in the shelf and shelf-slope waters of the Canadian Arctic Ocean from 2002 to 2016 to characterize the variability of 28,872 internal wave-driven turbulent dissipation and mixing rate estimates from a finescale parameterization. We find that these estimates of wave-driven dissipation rates and associated diapycnal diffusivities are generally low, but exhibit wide variability, each spanning several orders of magnitude. We further find that stratification plays a significant role in modulating the mixing rate both vertically and regionally within the study domain. Dissipation rate and diffusivity estimates display a weak seasonal cycle, but no evidence of statistically significant interannual trends over this period. Exceptionally large localized temporal variability appears to dominate other potential underlying patterns. The presence of strong upper ocean stratification combined with predominately weak dissipation rate estimates implies that many regions in the Canadian Arctic Ocean are likely in a molecular or buoyancy-controlled mixing regime. Even when the concept of a turbulent-enhanced diffusivity is potentially relevant, most turbulent heat flux estimates out of the Atlantic Water thermocline are smaller than the average value required to close the standardly assumed Arctic Ocean heat budget. In contrast, we find evidence for isolated occurrences of anomalously large heat fluxes, which may disproportionately contribute to the liberation of Atlantic Water heat toward the surface sea ice pack.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available