4.7 Review

Bioengineered heparins and heparan sulfates

Journal

ADVANCED DRUG DELIVERY REVIEWS
Volume 97, Issue -, Pages 237-249

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addr.2015.11.002

Keywords

Heparin; Heparan sulfate; Chemoenzymatic synthesis; Metabolic engineering; Glycosaminoglycans; Sulfotransferases; Glycosyltransferases; 3 '-Phosphoadenosine-5 '-phosphosulfate

Funding

  1. National Institutes of Health [HL094463, GM102137, HL62244, HL096972]
  2. National Science Foundation [MCB-1448657]

Ask authors/readers for more resources

Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available