4.6 Article

Composition engineering of Sb2S3 film enabling high performance solar cells

Journal

SCIENCE BULLETIN
Volume 64, Issue 2, Pages 136-141

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scib.2018.12.013

Keywords

Solar cell; Sb2S3; Thermal evaporation; Co-evaporation; Power conversion efficiency

Funding

  1. Fundamental Research Funds for the Central Universities [WK2060140023, CX3430000001, WK2060140024]
  2. Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology [2016FXZY003]
  3. National Natural Science Foundation of China [U1732150]

Ask authors/readers for more resources

Sb2S3 is a kind of stable light absorption materials with suitable band gap, promising for practical applications. Here we demonstrate that the engineering on the composition ratio enables significant improvement in the device performance. We found that the co-evaporation of sulfur or antimony with Sb2S3 is able to generate sulfur-or antimony-rich Sb2S3. This composition does not generate essential influence on the crystal structure, optical band and film formability, while the carrier concentration and transport dynamics are considerably changed. The device investigations show that sulfur-rich Sb2S3 film is favorable for efficient energy conversion, while antimony-rich Sb2S3 leads to greatly decreased device performance. With optimizations on the sulfur-rich Sb2S3 films, the final power conversion efficiency reaches 5.8%, which is the highest efficiency in thermal evaporation derived Sb2S3 solar cells. (C) 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available