4.6 Article

Autocorrelation Analysis of Vibro-Acoustic Signals Measured in a Test Field for Water Leak Detection

Journal

APPLIED SCIENCES-BASEL
Volume 8, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/app8122450

Keywords

leak detection; plastic pipe; vibration measurement; acoustic signal; autocorrelation function

Ask authors/readers for more resources

Reducing losses in water distribution networks is a worldwide challenge and all utilities are developing proper strategies for the active control of leaks. Temporary or permanent grids of units for the continuous monitoring of pipelines through vibro-acoustic measurements are probably the most commonly adopted leak detection systems. Such systems generally rely on the definition of proper thresholds to detect increments in the vibration levels associated with leaks. Since the thresholds are strongly dependent on the local boundary conditions of the monitored network, the initial setup is costly and time consuming, and the risk of undetected leaks or false alarms increases. This work aims to investigate leak detection methods based on the inherent properties of the measured signals instead of their relative amplitude. In particular, the possibility of detecting water leaks in small-diameter plastic pipes by analyzing the autocorrelation function of vibro-acoustic signals is assessed. An experimental campaign is conducted in a full-scale test facility that simulates the actual network. The measurements concerning artificially generated leaks are attained by two accelerometers and one hydrophone. The experimental results confirm the effectiveness of the proposed approach, which is therefore proven as a promising tool for leak detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available